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a b s t r a c t

In certain circumstances tools of Riemannian geometry are sufficient to address questions
arising in the more general Finslerian context. We show that one such instance presents
itself in the characterisation of geodesics in Randers spaces of constant flag curvature. To
achieve a simple, Riemannian derivation of this special family of curves, we exploit the
connection between Randers spaces and the Zermelo problem of time-optimal navigation
in the presence of background fields. The characterisation of geodesics is then proven by
generalising an intuitive argument developed recently for the solution of the quantum
Zermelo problem.

© 2016 Elsevier B.V. All rights reserved.

Investigations of Finsler manifolds usually require tools more involved than those of Riemannian geometry [1]. For
instance, whereas the Levi-Civita connection of Riemannian geometry is a linear connection on the tangent bundle of
the underlying manifold, one of its generalisations in the Finslerian context, the so-called Chern connection, is a linear
connection on a distinguished vector bundle over the projective sphere bundle [2]. Nevertheless, in certain situations
Riemannian methods are sufficient to deal with aspects of Finsler geometry and the resulting simplifications, such as the
ones reported below, canbe substantial. Specifically,whatwe show is that themain result of [3], namely, the characterisation
of the geodesics of a special class of Finsler spaces, can be proven using tools from Riemannian geometry only.

To begin, let us recall that a Finsler manifold (M, F) is a C∞ manifold M together with a positive function F(x, y)
on the tangent bundle, called the Finsler function, which is required to be C∞ and homogeneous of first degree, that is,
F(x, λy) = λF(x, y) for any λ > 0. Moreover, the Hessian of F 2 with respect to y:

gij(x, y) =
1
2

∂2

∂yiyj
F 2(x, y)

is assumed to be positive-definite outside the zero-section of TM. It can be shown that F(x, y) =

gij(x, y)yiyj.
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If F can be expressed in the form

F(x, y) =


αijyiyj + βiyi,

where α is a Riemannian metric and β a one-form, then M is called a Randers space. The Finslerian metric on M of Randers
type thus takes the form

gij(x, y) = αij + βiβj +
(αijβk + αjkβi + αkiβj)yk

(αklykyl)1/2
+

(βkyk)αikαjlykyl

(αklykyl)3/2
.

Randers spaces were first introduced in [4] in the context of a unified theory of gravitation and electromagnetism and arise
in a wide range of physical applications such as the electron microscope [5], the propagation of sound and light rays in
movingmedia [6,7], and the time-optimal control in the presence of background fields [8]—the last point being of particular
relevance for the present discussion.

To explain the connection between Randers spaces and time-optimal control, we start from a Riemannian manifold M
with metric h, together with a vector field W that satisfies |W | < 1 and plays the role of the background field, or ‘wind’.
The goal is to solve the Zermelo problem, that is, to navigate from one point on M to another along the path q(s) in the
shortest possible time under the influence of W , assuming a maximum attainable speed of |q̇| = 1 if wind were absent. A
problem of this kind was first posed and solved by Zermelo for the navigation of ships at sea (modelled as the Euclidean
plane) for a general spacetime-dependent field W [9] (see also [10]). The general formulation on Riemannian manifolds
under time-independent fields, and the connection to Randers spaces, was identified more recently by Shen [8]. The idea
can be illustrated as follows. Supposing for a moment that one were able to travel for finite time in a tangent space TpM for
a fixed p, it is clear that the set of destinations reachable in one unit of time coincides with the unit circle, shifted by W (p).
Correspondingly, the minimum time F(p, v) it takes to reach the tip of a given vector v in TpM is given by the ratio |v|/|ρv|

of Euclidean norms, where ρv is the unique vector collinear with v that lies on the shifted unit circle. To put it differently,
the vector v/F(p, v) − W (p) has unit length. It follows that

F(p, v) =
−h(v,W (p)) +


h(v,W (p))2 + |v|2(1 − |W (p)|2)
1 − |W (p)|2

.

The function F defined in this manner is a Finsler function of Randers type. Specifically,

αij =
hij

1 − |W |2
+

WiWj

(1 − |W |2)2
, βi = −

Wi

1 − |W |2
,

whereWi = hijW j. Conversely, it can be shown that for each Randers space there is a corresponding Zermelo problem [11].
We remark in passing that there is yet another equivalent perspective, whereby with each Randers space is associated a
conformally stationary spacetime [12].

The preceding discussion implies that if a curve q : [a, b] → M is traversed at maximum speed, then the time it takes to
complete the journey is given by the Randers length

T =

 b

a
F(q(s), q̇(s)) ds,

where we wrote q̇(s) for the derivative with respect to the curve parameter s. If the curve q(s) has the physical parame-
terisation, that is, q(s) corresponds to the location reached by the maximum speed trajectory at time s − a after setting
off from q(a), then F(q(s), q̇(s)) = 1 and T = b − a. In other words, curves in the physical parameterisation have unit
Randers speed and the passage of time is measured by Randers length. As a consequence, Randers geodesics in the physical
parameterisation correspond to solutions of the Zermelo problem. Tomake this statement more precise, recall that Randers
geodesics are curves that locally minimise Randers length. That is, q : [a, b] → M is a Randers geodesic if and only if for any
c ∈ [a, b] there exists an interval I = [c − ε, c + ε] such that q|I minimises Randers length among all curves defined on I
with the same endpoints. Hence, if endowed with the physical parameterisation, Randers geodesics are the same as curves
that locally minimise travel time. Using this equivalence, we can reformulate Theorem 2 of [3] in the following equivalent
manner. We write L for Lie derivative.

Theorem 1. Assume that the wind vector fieldW in the Zermelo problem above is an infinitesimal homothety, that is,LWh = σh
for a constant σ . Then, if q : (−ε, ε) → M is a locally time-minimising curve, p(t) = ϕt(t, q(t)) is a Riemannian geodesic of
(M, h), where ϕ is the flow of −W. Conversely, if p : (−ε, ε) → M is a Riemannian geodesic, q(t) = ϕ−1(t, p(t)) is a locally
time-minimising curve, where ϕ−1 is the flow of W.

Notice that the existence of the flow maps on neighbourhoods containing q(t) and p(t), respectively, can be ensured by
scaling ε if necessary.

The proof of Theorem 2 of [3] (reformulated here as Theorem 1 above) relies on the geodesic equation for Randers spaces,
derived for instance in [2, Chapter 11], which is then verified by explicit calculation—but as we saw above, the Randers
geodesics on (M, F) correspond precisely to the locally time-minimising curves of the Zermelo problem. To exploit this fact,
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