Real hypersurfaces in the complex quadric with commuting and parallel Ricci tensor

Young Jin Suh
Kyungpook National University, College of Natural Sciences, Department of Mathematics, Daegu 702-701, Republic of Korea

A R T I C L E INFO

Article history:

Received 31 August 2014
Received in revised form 25 February 2016
Accepted 1 March 2016
Available online 9 March 2016

MSC:

primary 53C40
secondary 53C55

Keywords:

Commuting Ricci tensor
Parallel Ricci tensor
\mathfrak{A}-isotropic
\mathfrak{A}-principal
Complex conjugation
Complex quadric

Abstract

First we introduce the notion of commuting and parallel Ricci tensor for real hypersurfaces in the complex quadric $Q^{m}=S O_{m+2} / \mathrm{SO}_{2} \mathrm{SO}_{m}$. Then, according to the \mathfrak{A}-isotropic unit normal N, we give a complete classification of real hypersurfaces in $Q^{m}=S O_{m+2} / S O_{2} S_{m}$ with commuting and parallel Ricci tensor.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

When we consider some Hermitian symmetric spaces of rank 2, usually we can give examples of Riemannian symmetric spaces $S U_{m+2} / S\left(U_{2} U_{m}\right)$ and $S U_{2, m} / S\left(U_{2} U_{m}\right)$, which are said to be complex two-plane Grassmannians and complex hyperbolic two-plane Grassmannians respectively (see [1-4], and [5]). Those are said to be Hermitian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the Kähler structure J and the quaternionic Kähler structure \mathfrak{J}. The rank of $S U_{2, m} / S\left(U_{2} U_{m}\right)$ is 2 and there are exactly two types of singular tangent vectors X of $S U_{2, m} / S\left(U_{2} U_{m}\right)$ which are characterized by the geometric properties $J X \in \mathfrak{J} X$ and $J X \perp \mathfrak{J} X$ respectively.

As another kind of Hermitian symmetric space with rank 2 of compact type different from the above ones, we have the example of complex quadric $Q^{m}=\mathrm{SO}_{m+2} / \mathrm{SO}_{2} \mathrm{SO}_{m}$, which is a complex hypersurface in complex projective space $\mathbb{C} P^{m}$ (see Berndt and Suh [6], and Smyth [7]). The complex quadric also can be regarded as a kind of real Grassmann manifold of compact type with rank 2 (see Kobayashi and Nomizu [8]). Accordingly, the complex quadric admits two important geometric structures as a complex conjugation structure A and a Kähler structure J, which anti-commute with each other, that is, $A J=-J A$. Then for $m \geq 2$ the triple $\left(Q^{m}, J, g\right)$ is a Hermitian symmetric space of compact type with rank 2 and its maximal sectional curvature is equal to 4 (see Klein [9] and Reckziegel [10]).

Apart from the complex structure J there is another distinguished geometric structure on Q^{m}, namely a parallel rank two vector bundle \mathfrak{A} which contains an S^{1}-bundle of real structures, that is, complex conjugations A on the tangent spaces of Q^{m}. Here the notion of parallel vector bundle \mathfrak{A} means that $\left(\bar{\nabla}_{X} A\right) Y=q(X) A Y$ for any vector fields X and Y on Q^{m}, where $\bar{\nabla}$ and q denote a connection and a certain 1-form defined on $T_{z} Q^{m}, z \in Q^{m}$ respectively.

[^0]Recall that a nonzero tangent vector $W \in T_{[z]} Q^{m}$ is called singular if it is tangent to more than one maximal flat in Q^{m}. There are two types of singular tangent vectors for the complex quadric Q^{m} :

1. If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A)$, then W is singular. Such a singular tangent vector is called \mathfrak{A}-principal.
2. If there exists a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W /\|W\|=(X+J Y) / \sqrt{2}$, then W is singular. Such a singular tangent vector is called \mathfrak{A}-isotropic.

For the complex projective space $\mathbb{C} P^{m}$ and the quaternionic projective space $\mathbb{H} P^{m}$ some characterizations was obtained by Okumura [11], and Pérez and Suh [12] respectively. In particular Okumura [11] proved that the Reeb flow on a real hypersurface in $\mathbb{C} P^{m}=S U_{m+1} / S\left(U_{1} U_{m}\right)$ is isometric if and only if M is an open part of a tube around a totally geodesic $\mathbb{C} P^{k} \subset \mathbb{C} P^{m}$ for some $k \in\{0, \ldots, m-1\}$. Here the isometric Reeb flow means that $\mathscr{L}_{\xi} g=0$ for the Reeb vector field $\xi=-J N$, where N denotes a unit normal vector field of M in $\mathbb{C} P^{m}$.

For the complex 2-plane Grassmannian $G_{2}\left(\mathbb{C}^{m+2}\right)=S U_{m+2} / S\left(U_{2} U_{m}\right)$ the classification was obtained by Berndt and Suh in [1]. The Reeb flow on a real hypersurface in $G_{2}\left(\mathbb{C}^{m+2}\right)$ is isometric if and only if M is an open part of a tube around a totally geodesic $G_{2}\left(\mathbb{C}^{m+1}\right) \subset G_{2}\left(\mathbb{C}^{m+2}\right)$ in [1]. Moreover, in [5] we have asserted that the Reeb flow on a real hypersurface in $S U_{2, m} / S\left(U_{2} U_{m}\right)$ is isometric if and only if M is an open part of a tube around a totally geodesic $S U_{2, m-1} / S\left(U_{2} U_{m-1}\right) \subset$ $S U_{2, m} / S\left(U_{2} U_{m}\right)$. In this paper we investigate this problem for the complex quadric $Q^{m}=S O_{m+2} / S O_{2} S O_{m}$. In view of the previous two results a natural expectation might be that the classification involves at least the totally geodesic $Q^{m-1} \subset Q^{m}$. But, in the complex quadric Q^{m} Berndt and Suh [6] have proved the following result:

Theorem 1.1. Let M be a real hypersurface of the complex quadric $Q^{m}, m \geq 3$. The Reeb flow on M is isometric if and only if m is even, say $m=2 k$, and M is an open part of a tube around a totally geodesic $\mathbb{C} P^{k} \subset Q^{2 k}$.

By the Kähler structure J of the complex quadric Q^{m}, we can transfer any tangent vector fields X on M in Q^{m} as follows:

$$
J X=\phi X+\eta(X) N
$$

where $\phi X=(J X)^{T}$ denotes the tangential component of $J X$ and N a unit normal vector field on M in Q^{m}.
When the Ricci tensor Ric of M in Q^{m} commutes with the structure tensor ϕ, that is, Ric $\cdot \phi=\phi \cdot \operatorname{Ric}, M$ is said to be Ricci commuting. When the Ricci tensor Ric of M in Q^{m} is parallel, that is, ∇ Ric $=0$, let us say M has a parallel Ricci tensor. Then first with the notion of commuting Ricci tensor for a hypersurface M in the complex quadric Q^{m}, we can prove the following

Main Theorem 1. Let M be a real hypersurface of the complex quadric $Q^{m}, m \geq 3$, with commuting Ricci tensor. Then the unit normal vector field N of M is either \mathfrak{A}-principal or \mathfrak{A}-isotropic.

In the first class where M has an \mathfrak{A}-isotropic unit normal N, we have asserted in [6] that M is locally congruent to a tube over a totally geodesic $\mathbb{C} P^{k}$ in $Q^{2 k}$ if the shape operator commutes with the structure tensor, that is $S \cdot \phi=\phi \cdot S$. In the second class for an \mathfrak{A}-principal unit normal N we have proved that M is locally congruent to a tube over a totally geodesic and totally real submanifold S^{m} in Q^{m} if M is a contact hypersurface, that is, $S \phi+\phi S=k \phi, k \neq 0$ constant (see [2]).

Now at each point $z \in M$ let us consider a maximal \mathfrak{A}-invariant subspace

$$
\mathcal{Q}_{z}=\left\{X \in T_{z} M \mid A X \in T_{z} M \text { for all } A \in \mathfrak{A}_{z}\right\}
$$

of $T_{z} M, z \in M$. Thus for the case where the unit normal vector field N is \mathfrak{A}-isotropic it can be easily checked that the orthogonal complement $Q_{z}^{\perp}=\mathcal{C}_{z} \ominus Q_{z}, z \in M$, of the distribution \mathcal{Q} in the complex subbundle \mathcal{C}, becomes $Q_{z}^{\perp}=$ Span $[A \xi, A N]$. Here it can be easily checked that the vector fields $A \xi$ and $A N$ belong to the tangent space $T_{z} M, z \in M$ if the unit normal vector field N becomes \mathfrak{A}-isotropic.

We now assume that M is a Hopf hypersurface. Then the shape operator S of M in Q^{m} satisfies

$$
S \xi=\alpha \xi
$$

with the smooth function $\alpha=g(S \xi, \xi)$, which is said to be the Reeb function on M.
Then in this paper we give a complete classification for real hypersurfaces in the complex quadric Q^{m} with commuting and parallel Ricci tensor as follows:

Main Theorem 2. There do not exist any Hopf real hypersurfaces in the complex quadric $Q^{m}, m \geq 4$, with commuting and parallel Ricci tensor.

Now let us consider an Einstein hypersurface in complex quadric Q^{m}. Then the Ricci tensor of type $(1,1)$ on M becomes Ric $=\lambda I$, where λ is constant on M and I denotes the identity tensor on M. Accordingly, the Ricci tensor is parallel and commuting, that is Ric $\cdot \phi=\phi \cdot$ Ric. Moreover, M has an \mathfrak{A}-isotropic unit normal vector field N in Q^{m}. So we assert a corollary as follows:

Corollary 1.2. There do not exist any Hopf Einstein real hypersurfaces in the complex quadric $Q^{m}, m \geq 4$.

https://daneshyari.com/en/article/1894547

Download Persian Version:

https://daneshyari.com/article/1894547

Daneshyari.com

[^0]: E-mail address: yjsuh@knu.ac.kr.
 http://dx.doi.org/10.1016/j.geomphys.2016.03.001 0393-0440/© 2016 Elsevier B.V. All rights reserved.

