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a b s t r a c t

We continue our systematic development of noncommutative and nonassociative differ-
ential geometry internal to the representation category of a quasitriangular quasi-Hopf al-
gebra. We describe derivations, differential operators, differential calculi and connections
using universal categorical constructions to capture algebraic properties such as Leibniz
rules. Ourmain result is the construction ofmorphismswhich provide prescriptions for lift-
ing connections to tensor products and to internal homomorphisms. We describe the cur-
vatures of connections within our formalism, and also the formulation of Einstein–Cartan
geometry as a putative framework for a nonassociative theory of gravity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and summary

This paper is the second part in a series of articles whose goal is to systematically develop a formalism for differential
geometry on noncommutative and nonassociative spaces. The main physical inspiration behind this work is sparked by the
recent observations from closed string theory that certain non-geometric flux compactifications experience a nonassociative
deformation of the spacetime geometry [1–6] (see [7–9] for reviews and further references), togetherwith the constructions
of [10,11] which show that the corresponding nonassociative algebras and their basic geometric structures can be obtained
by cochain twist quantization, and hence are commutative and associative quantities when regarded as objects in a suitable
braided monoidal category. See the first paper in this series [12], hereafter referred to as Part I, for further motivation and a
more complete list of relevant references.

Earlier categorical approaches to nonassociative geometry along these lineswere pursued in [13,14]. In the present paper
we develop important notions of differential geometry internal to the representation category HM of a quasitriangular
quasi-Hopf algebra H . In particular, we develop the notions of derivations, differential operators, differential calculi and
connections by using universal categorical constructions such as categorical limits. In contrast to the approach of [14], our
geometric structures are described by internal homomorphisms instead of morphisms in the category HM . This leads to a
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much richer framework, because the conditions for being a morphism in HM (i.e. H-equivariance) are very restrictive and
hence the framework in [14] allows for only very special geometric structures. Our internal homomorphism approach is
inspired by the formalism of [15] (see [16,17] for overviews), and it clarifies these ideas and constructions in categorical
terms.

We begin in Section 2 with a brief review of the categorical framework which was developed in Part I. In contrast to that
paper, in the present paper we consider the case where all modules are Z-graded; this allows us later on to regard graded
objects such as differential calculi naturally as objects in our categories.

In Section 3 we introduce derivations der(A) on braided commutative algebras A in HM by formalizing the Leibniz rule
in terms of an equalizer in HM . We analyse structural properties of der(A) and in particular prove that, in the case where
H is triangular, der(A) together with an internal commutator [·, ·] is a Lie algebra in HM . We then introduce differential
operators diff(V ) on symmetric A-bimodules V in HM by again using a suitable equalizer in HM to capture the relevant
algebraic properties.We show that diff(V ) is an algebra in HM andwe also prove that the zeroth order differential operators
are the internal endomorphisms endA(V ) in the category of symmetric A-bimodules H

AM
sym
A . Using the product structure

on differential operators to formalize nilpotency of a differential, we can then give a definition of a differential calculus in
HM .

In Section 4 we develop an appropriate notion of connections con(V ) on objects V in H
AM

sym
A . The idea is to formalize a

generalization of the usual Leibniz rule with respect to a differential calculus in terms of an equalizer in HM . The resulting
object con(V ) is analysed in detail and it is shown that the usual affine space of ordinary connections arises as a certain
proper subset of con(V ). Our more flexible definition of connections has the advantage that con(V ) also forms an object in
HM in addition to being an affine space. We then develop a lifting prescription for connections to tensor products V ⊗A W
of objects V ,W in H

AM
sym
A . It is important to notice that our notion of tensor product connections differs from the standard

one: Although our techniques are only applicable to braided commutative algebras and their bimodules in HM , they are
more flexible in the sense that any two connections can be lifted to a tensor product connection, not only those which
satisfy the very restrictive ‘bimodule connection’ property proposed in [18–21]. We also develop a lifting prescription for
connections to internal homomorphisms homA(V ,W ) of objects V ,W in H

AM
sym
A . These lifts are all important ingredients

in (noncommutative and nonassociative) Riemannian geometry for extending e.g. tangent bundle connections to all tensor
fields, and they play an instrumental role in physical applications of our formalism to noncommutative and nonassociative
gravity theories such as those anticipated to arise in non-geometric string theory. All of these constructions moreover
generalize and clarify the corresponding constructions of [15] in categorical terms.

Finally, in Section 5 we assign curvatures to connections and show that they are internal endomorphisms in the category
H
AM

sym
A , provided that H is triangular. We also obtain a Bianchi tensor, which in classical differential geometry would

identically vanish; in general it is not necessarily equal to 0, and hence in this sense it characterizes the noncommutativity
and nonassociativity of our geometries. We further observe that the curvature of any tensor product connection is the sum
of the two individual curvatures, whichmeans that curvatures behave additively in an appropriate sense. We conclude with
a brief outline of how our formalism could be used to describe a noncommutative and nonassociative theory of gravity
coupled to Dirac fields; our considerations are based on Einstein–Cartan geometry and its noncommutative generalization
which was developed in [22].

2. Categorical preliminaries

Let k be an associative and commutative ring with unit 1 ∈ k. In contrast to Part I, in this paper we shall work with
Z-graded k-modules. This will have the advantage later on that naturally graded objects such as differential calculi can be
described as objects in the categories we define below, and also that minus signs will be absorbed into the formalism. The
goal of this section is to adapt the material developed in [12] to the graded setting and to thereby also fix our notation for
the present paper.

2.1. Z-graded k-modules

The category M of bounded Z-graded k-modules is defined as follows: The objects in M are the bounded Z-graded
k-modules

V =


n∈Z

V n, (2.1)

where the k-modules V n = 0 for all but finitely many n. The morphisms in M are the degree preserving k-linear maps
f : V → W , i.e. f (V n) ⊆ W n for all n ∈ Z. For any object V in M there is a map

| · | :


n∈Z

V n −→ Z, (2.2)

which assigns to elements v ∈ V n their degree |v| = n. Elements of V n are said to be homogeneous of degree n.
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