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a b s t r a c t

We study the geometry of null hypersurfaces M in generalized Robertson–Walker
spacetimes. First we characterize such null hypersurfaces as graphs of generalized eikonal
functions over the fiber and use this characterization to show that such hypersurfaces are
parallel if and only if their fibers are also parallel.We further use this technique to construct
several examples of null hypersurfaces in both de Sitter and anti de Sitter spaces. Then
we characterize all the totally umbilical null hypersurfaces M in a Lorentzian space form
(viewed as a quadric in a semi-Euclidean ambient space) as intersections of the space form
with a hyperplane. Finally we study the totally umbilical spacelike hypersurfaces of null
hypersurfaces in space forms and characterize them as planar sections ofM .

© 2016 Published by Elsevier B.V.

1. Introduction

Semi-Riemannian geometry is nowadays a well-established area of research, partly motivated by its applications to
General Relativity. Even though semi-Riemannian submanifolds (i.e., those whose induced metric is non-degenerate) have
been extensively studied, null submanifolds (with degeneratemetric) are less understood, in spite of the fact that numerous
features of relevant physical meaning in Relativity find their mathematical grounds in such geometrical objects. That is the
case of light trajectories or the smooth parts of event and Cauchy horizons just to name a few.

In spite of their relevance, a systematic study of null submanifolds from a mathematical point of view only flourished
from the decade of 1980. Since then, several concepts and results from the semi-Riemannian scenario have been extended
to this context, sometimes following different approaches in order to give adequate definitions of the geometrical objects
required to study these submanifolds. For example, the Refs. [1–3] provide a broad vision on the subject.

It is also worth noting that the submanifold geometry of null manifolds is yet to be explored in full detail. An example of
particular physical interest related to the occurrence of gravitational collapse consists in the study of a spacelike surface S
immersed in a null hypersurfaceM of a four dimensional spacetime M̄; see [4–6]. In this setting, S represents the surface of a
collapsingmassive object (a star for instance) whileM is the event horizon associated to the corresponding black hole. Thus,
from a geometrical perspective, one of the main problems that arise in this scenario consists in relating the geometrical
properties of S and M; in particular, the problem of characterizing the spacelike surfaces subject to suitable geometrical
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restrictions that can be immersed in a null hypersurface of spacetime. A remarkable result in this direction was obtained
by Asperti and Dajczer in [7]: For n ≥ 3, a simply connected n-dimensional Riemannian manifold M may be isometrically
immersed in the (n+ 1)-dimensional lightcone if and only ifM is conformally flat. As it turns out, even when dealing to the
simplest of the null hypersurfaces – namely the light cone in Lorentz–Minkowski space – reveals a rich geometry, as can
be seen in the results presented in [8–16]. In particular, in [14], the authors showed that a spacelike hypersurface S of the
lightcone in the Minkowski space Rn+2

1 is U-totally umbilical with respect to any normal vector field U if and only if S is the
intersection of the lightcone with a (n + 1)-dimensional hyperplane not passing through the origin.

In this paper we will focus in the study of the geometry of null hypersurfaces of a larger class of spacetimes that
include all the Lorentzian space forms, namely, the class of generalized Robertson–Walker (GRW) spacetimes. Recall that
a GRW spacetime is a Lorentzian warped product M̄ = −I ×ϱ F , I being a real interval, F a Riemannian manifold and ϱ a
differentiable, real, positive function defined on I . If F has constant sectional curvature, then M̄ is called a Robertson–Walker
spacetime. These spacetimes play a key role in Cosmology since they represent the evolution over time of a homogeneous and
isotropic universe [4–6]. The class of Robertson–Walker spacetimes includes the de Sitter space Sn+2

1 (when F is a sphere) and
the anti de Sitter spaceHn+2

1 (when F is a hyperbolic space), which togetherwith Lorentz–Minkowski spaceRn+2
1 encompass

the class of Lorentzian space forms.
The presentwork is organized as follows: In Section 2we establish the notation, definitions and basic structure equations

involving null hypersurfaces and their spacelike hypersurfaces. Then in Section 3 we study the geometry of null parallel
hypersurfaces in GRW spacetimes. By proving that a submanifold in a GRW spacetime given as the graph of a function
f : F → R over the fiber is null if and only if it is the graph of a generalized eikonal function defined on the fiber we show
that such null hypersurface is parallel if and only if its fiber is also parallel; see Theorem 3.8.

In Section 4 we specialize our study to Robertson–Walker spacetimes and use the techniques developed in the
previous section to construct concrete examples. Moreover, in Proposition 4.9 we characterize all the totally umbilical null
hypersurfacesM in a Lorentzian space form M̄ as the intersections of M̄ with a hyperplane.

Finally, in Section 5 (Theorem 5.3) we characterize the totally umbilical spacelike hypersurfaces of a totally umbilical
null hypersurfaceM of Sn+2

1 and Hn+2
1 as the intersections ofM with the totally geodesic hypersurfaces of the corresponding

Lorentzian space form, thus extending the results presented in [14].

2. Preliminaries

Wewill follow closely the notation in [17,1,2]. Let M̄n+2 be a (n+2)-dimensional, semi-Riemannianmanifoldwithmetric
⟨ , ⟩ and semi-Riemannian connection ∇̄ . A submanifoldM of M̄ is null if the restriction of the metric toM is degenerate at
each point p ∈ M , which in turn means that for every such p there is a non-zero vector ξp ∈ TpM such that ⟨ξp, Xp⟩ = 0 for
each Xp ∈ TpM . As usual, if dimM = n + 1, we say thatM is a hypersurface of M̄ .

Given a null hypersurfaceM ⊂ M̄ , wewill consider a screen distribution S(TM), that is, a n-dimensional distribution in TM
such that the restriction of themetric ofM to S(TM) is positive definite. From [1], we know that in a coordinate neighborhood
U ⊂ M there is a vector field N such that

⟨ξ,N⟩ = 1, ⟨N,N⟩ = ⟨N, X⟩ = 0 (1)
for each X ∈ Γ (S(TM|U)), where ξ is a vector field extension of ξp to U . We use ξ and N to decompose the tangent bundle
TM̄ into three vector bundles. First we write TM̄ locally as

TM̄ = TM ⊕ span(N). (2)
Additionally, we express TM as

TM = S(TM)⊕orth span(ξ), (3)
so that

TM̄ = S(TM)⊕orth (span(ξ)⊕ span(N)).
Let P be the projection of Γ (TM) onto Γ (S(TM)) using the decomposition (3). The local Gauss–Weingarten formulae are

∇̄XY = ∇XY + h(X, Y ) = ∇XY + B(X, Y )N,
∇̄XN = −ANX + ∇

t
XN = −ANX + τ(X)N;

∇XPY = ∇
∗

XPY + h∗(X, PY ) = ∇
∗

XPY + C(X, PY )ξ ;
∇Xξ = −A∗

ξX + ∇
∗t
X ξ = −A∗

ξX − τ(X)ξ ,

(4)

where X, Y ∈ Γ (TM). Here ∇ , ∇
t , ∇

∗ and ∇
∗t denote the induced connections on TM , span(N), S(TM) and span(ξ),

respectively; h and h∗ are the second fundamental forms ofM and S(TM),
B(X, Y ) = ⟨∇̄XY , ξ⟩ = ⟨A∗

ξX, Y ⟩,

C(X, PY ) = ⟨∇XPY ,N⟩ = ⟨ANX, PY ⟩,

are the local second fundamental formsofM and S(TM), whileAN andA∗

ξ are the shape operatorson TM and S(TM), respectively.
Finally, τ is the 1-form on TM given by τ(X) = ⟨∇̄XN, ξ⟩.
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