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a b s t r a c t

The twist construction is a geometric model of T-duality that includes constructions of
nilmanifolds from tori. This paper shows how one-dimensional foliations on manifolds
may be used in a shear construction, which in algebraic form builds certain solvable Lie
groups from Abelian ones. We discuss other examples of geometric structures that may be
obtained from the shear construction.
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1. Introduction

Recent years have seen a large number of constructions and classifications of geometric structures on nilpotent and
solvable Lie groups, for example [1–4]. Many of these structures are motivated by ideas from theoretical physics, and
particularly various requirements coming from string and M-theories. An important aspect of such theories are various
duality relations. In particular, as Strominger, Yau and Zaslow [5] proposed that T-duality is closely related to the concept
of mirror Calabi–Yau manifolds. When fluxes are introduced, the relevant geometries no longer have special holonomy, but
are special types of almost Hermitian manifolds in dimension 6 and, for M-theory, G2-manifolds in dimension 7.

In [6,7] a geometric version of T-duality, called the twist construction, was described that reproduces the known results
on nilmanifolds and provides other geometric examples. It was applied in [8] to describe the geometry of the c-map [9] that
constructs quaternionic Kähler manifolds in dimension 4n + 4 from projective special Kähler manifolds in dimension 2n.
The homogeneous models of this construction [10,11] provide all known examples of homogeneous quaternionic Kähler
metrics on completely solvable Lie groups [12]. However, the construction of [8] requires modifying the geometry via
so-called elementary deformations, before the twist construction is used. This is related to the solvable, rather thannilpotent,

∗ Corresponding author.
E-mail addresses: freibert@math.uni-kiel.de (M. Freibert), swann@math.au.dk (A. Swann).

http://dx.doi.org/10.1016/j.geomphys.2016.04.013
0393-0440/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.geomphys.2016.04.013
http://www.elsevier.com/locate/jgp
http://www.elsevier.com/locate/jgp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geomphys.2016.04.013&domain=pdf
mailto:freibert@math.uni-kiel.de
mailto:swann@math.au.dk
http://dx.doi.org/10.1016/j.geomphys.2016.04.013


M. Freibert, A. Swann / Journal of Geometry and Physics 106 (2016) 268–274 269

nature of the homogeneous examples. It is therefore interesting to look for a broader construction that includes the geometry
of solvable groups. The purpose of this paper is to propose such a shear construction in the situation where there is a single
symmetry, or more generally an appropriate one-dimensional foliation. We will restrict ourselves to a situation which for
solvable groups corresponds to having only real eigenvalues. In future work, we will describe how foliations from bundles
with flat connections can be used to remove this restriction and consider foliations of higher rank.

In Section 2, we consider the underlying Lie algebraic picture, first recalling the description for nilpotent Lie groups and
then extending it to the solvable case. We then provide a general geometric set-up in Section 3 based on a double fibration
picture, and discuss carefully what type of bundles may occur. The fibrations will be seen to be given by principal bundles
with one-dimensional fibres, but the connection-like one-forms are not necessarily principal. In Section 4, we describe how
geometric structures may be transferred through the shear construction, considering which differential forms are naturally
related via the horizontal distribution, and providing a formula for the de Rham differentials. Finally Section 5 shows how
this shear construction may be applied in examples for different geometric structures.

2. Algebraic models

2.1. The model behind the twist construction is based on the geometry of nilmanifolds. Recall that a Lie algebra n is
nilpotent if its lower central series n(1) = n′

= [n, n], n(k) = [n, n(k−1)
], terminates, so n(r) = {0} for some r > 1.

The smallest such number r is called the ‘‘step length’’ of n. Dually this condition is that there is a minimal filtration
n∗

= V0 > V1 > · · · > Vr−1 > {0}, given by Vi = Vi(n) = Ann(n(r−i)), with dVi ⊂ Λ2Vi+1 for each i. Our convention
is that dα(X, Y ) = −α([X, Y ]); the Jacobi identity is equivalent to d ◦ d = 0.

Fix an element α ∈ V0 \ V1 and choose a splitting n∗
= Rα⊕ W with V1 6 W . Let F ∈ Λ2V1 be a two-form with dF = 0.

Then dW 6 Λ2V1 6 Λ2W and we may define a new Lie algebra m, by taking m∗
= Rβ + W , retaining the definition of d

onW and putting dβ = dα + F . The algebras n and m are then said to be related by a twist construction.
One valid choice in this construction is F = −dα. This gives dβ = 0, and in this casem is a Lie algebra direct sum R⊕W ∗,

with W ∗ nilpotent. On the other hand, if m is the twist of n via F , then we may invert the construction by using the 2-form
−F . It follows that any nilpotent algebramay be obtained from repeated twists of an Abelian algebra of the same dimension.

Note that dual to the splitting n∗
= Rα⊕W we get a unique X ∈ n specified byW (X) = 0 and α(X) = 1. The condition

V1 ⊂ W ensures that X is central.
A simple example is provided by the Heisenberg algebra h3 = (0, 0, 12), where the abbreviated notation means that h∗

has a basis e1, e2, e3 with corresponding differentials 0, 0, 12, meaning de1 = 0, de2 = 0 and de3 = e1 ∧ e2 = e12. In this
case, we may take α = e3 and F = −dα = −e12. The resulting twist is the Abelian Lie algebra (0, 0, 0).

2.2. Now consider a solvable algebra s. This means that the derived series s′, (s′)′, . . . terminates at some finite step. One
then has that n = s′ is nilpotent and that a = s/n acts on n as an Abelian algebra of endomorphisms. In particular, if
n has step length r , then the subspace n(r−1) is preserved by a. It follows that the complexification n(r−1)

⊗ C contains a
one-dimensional invariant subspace ξC.

For the purposes of this article, let us work in the case when ξC may be chosen as the complexification of a real
one-dimensional subspace ξ 6 n(r−1) preserved by a. For example, this will be the case if s is completely solvable.

Fix a basis element X of ξ . Let α be any element of s∗ with α(X) = 1, then for W = Ann(ξ)we have s∗
= Rα ⊕ W .

The choice of ξ implies that there is an element η ∈ s∗ defined by [A, X] = η(A)X for each A ∈ s. We now have
dα = η∧ α+ F , with F ∈ Λ2W and η ∈ W . Furthermore ξ is an ideal of s and dW ⊂ Λ2W . Note that the relation d2α = 0,
implies that η and F satisfy

dF = η ∧ F , dη = 0 and η|ξ = 0. (1)

Now suppose F0 ∈ Λ2s∗ is another two-form. We wish to define a new Lie algebra r by putting r∗ = Rβ ⊕W with dβ to
be essentially dα + F0. More precisely, we may write F0 = η′

∧ α + F ′, with η′, F ′
∈ Λ∗W . Then define

dβ = η̃ ∧ β + F̃ , (2)

with η̃ = η+η′ and F̃ = F +F ′. For this to define a Lie algebra, we need d2β = 0, which as above is equivalent to dF̃ = η̃∧ F̃
and dη̃ = 0. Translating this back to conditions on F0, we first note that η′ is closed and η′

= −X y F0. Now

dF0 = −η′
∧ dα + dF ′

= −η′
∧ η ∧ α − η′

∧ F + (η + η′) ∧ (F + F ′)− η ∧ F

= η ∧ η′
∧ α + (η + η′) ∧ F ′

= (η − X y F0) ∧ F0.

In other words, we get a Lie algebra if and only if

dF0 = η0 ∧ F0, dη0 = 0, η0|ξ = 0 (3)

for η0 = η − X y F0. This is one model of a pair of Lie algebras related by a shear.
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