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a b s t r a c t

Wepresent a definition of unsignedmagnification in gravitational lensing valid on arbitrary
convex normal neighborhoods of time oriented Lorentzian manifolds. This definition is
a function defined at any two points along a null geodesic that lie in a convex normal
neighborhood, and foregoes the usual notions of lens and source planes in gravitational
lensing. Rather, it makes essential use of the van Vleck determinant, which we present
via the exponential map, and Etherington’s definition of luminosity distance for arbitrary
spacetimes.We then specialize our definition to spacetimes, like Schwarzschild’s, in which
the lens is compact and isolated, and show that ourmagnification function ismonotonically
increasing along any geodesic contained within a convex normal neighborhood.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Flux is an important observable in gravitational lensing. Suppose F is the observed flux of a light source, which has been
increased due to the gravitational focusing by an intervening massive lensing object, and that the hypothetical flux in the
absence of the lens would be F0. Then the magnification factor due to gravitational lensing is given by

µ =
F
F0

, (1)

ignoring image orientation. This magnification factor is not regarded as an observable because the intrinsic flux F0 without
the lens is unknown in general. The recent report of the first strongly lensed type Ia supernova [1] proves an exception to
this rule because such supernovae are standardizable candles. Moreover, it is clear that many more examples of strongly
lensed type Ia supernovae will be found by upcoming surveys, so cases of observable lensing magnification will become
more common.

From a theoretical point of view, the magnification factor µ is usually considered in terms of the quasi-Newtonian
approximation for gravitational lensing (see, e.g., [2,3]), which treats light rays as piecewise straight lines in Euclidean space.
However, the proper arena for gravitational lensing is, of course, the Lorentzian spacetime geometry of General Relativity.
Thus, it is desirable to generalize the definition ofmagnification to a spacetime setting and better understand its geometrical
meaning. The aim of this article is to do this by reinterpreting the classic definition of luminosity distance in spacetimes due
to Etherington [4] in terms of lensing magnification and the van Vleck determinant [5], which we express here in terms of
the exponential map. Indeed, we are not the first to promote the use of the exponential map in gravitational lensing; see,
e.g., the viewpoint offered in [6]. For the spacetime view of gravitational lensing in general, see, e.g., [7].
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In our understanding of the van Vleck determinant, we have been greatly aided by the two very comprehensive
treatments [8,9]. Indeed, most of Sections 3 and 4, on Synge’s world function and the van Vleck determinant, can be found
in [8] and [9], with one exception, however, that warrants their inclusion here: namely, our use of the exponential map to
compute the van Vleck determinant. For this reason, our notation, and several of our proofs, are noticeably different from
most of the existing literature. Our definition of magnification (Definition 3) and subsequent focusing theorem (Theorem 1)
are to be found in Section 5.

2. Overview of the exponential map and normal coordinates

Let (M, g) be a connected time oriented four-dimensional Lorentzian manifold, with g having signature (−, +, +, +).
Let C be a convex normal neighborhood of p ∈ M, that is, a neighborhood any two points q, q′ of which are connected by
a unique distance-minimizing geodesic αqq′ lying entirely in C , though there may well be other geodesics between q and
q′ that leave and then reenter C ; the αqq′ are usually referred to as ‘‘radial geodesics’’, and we will adopt this terminology
henceforth. Furthermore, one can arrange it so that for each q ∈ C , C is contained in the normal neighborhood of q provided
by the exponential map at q; that such a C exists at every point on a Lorentzianmanifold is proved, e.g., in [10, pp. 133–136].
Thus normal coordinates (xi) centered at any point p ∈ C cover all of C , andwewill in fact describe Synge’s ‘‘world function’’
below primarily in terms of such coordinates. Next, ‘‘αqq′ ’’ will always denote the unique radial geodesic in C from q to q′,
‘‘α′

qq′(t)’’ will denote its tangent vector at the point αqq′(t), and we henceforth adopt the convention of parametrizing our
radial geodesics to run for unit affine parameter: αqq′ : [0, 1] −→ C , with αqq′(0) = q and αqq′(1) = q′. Also, we adopt the
convention of writing both a curve, and its coordinate representation in a coordinate chart, using the same symbol. Finally,
we the Einstein summation convention will be used throughout, with indices labeled 0, 1, 2, 3.

Because of the essential role played for us by the exponential map, we now briefly review some of its properties. Thus,
fix p ∈ C and recall that any point q ∈ C is given by q = γV (1) := expp(V ) for some unique vector V ∈ TpM , where γV
is the unique geodesic starting at p in the direction V , and where expp denotes the exponential map at p. Since expp is a
diffeomorphism from a neighborhood of 0 ∈ TpM to C , any choice of orthonormal basis {E0|p, . . . , E3|p} ⊂ TpM provides
us with ‘‘normal’’ coordinates (xi) defined with respect to that basis. Indeed, expressing any X ∈ TpM as X = X iEi|p, the
diffeomorphism E : TpM −→ Rn sending X → (X0, . . . , X3) composes with exp−1

p to give

q = γV (1)
exp−1

p
−−−→ V = V iEi|p

E
−→ (V 0, . . . , V 3) := x(q)  

(xi) coordinates of q

. (2)

Thus xi(q) = V i, and because geodesics γV have the scaling property γV (t) = γtV (1) whenever either side is defined, the
geodesic γV in the coordinates (xi) is given by

γV (t) = (tV 0, . . . , tV 3). (3)

Of course, γV : [0, 1] −→ C must be our radial geodesic αpq : [0, 1] −→ C . Furthermore, the normal coordinate basis
vectors {∂/∂x0, . . . , ∂/∂x3} defined with respect to the (xi) satisfy, by construction,

∂

∂xi


p

= Ei|p,

hence gij(p) = diag (−1, 1, 1, 1) (i.e., they are ‘‘normal’’ at p). Because of (3), it also follows that Γ i
jk(p) = 0, hence also

∂i|p(gjk) = 0; consult, e.g., [11, Prop. 33, p. 73].
Now we use normal coordinates at p to define ‘‘quasi-normal’’ coordinates at any other point q ∈ C , as follows. Let

{E0|p, . . . , E3|p} ⊂ TpM denote the orthonormal basis with respect to which the normal coordinates (xi) at p are defined.
Given any other point q ∈ C , let Ji denote the unique Jacobi field along the radial geodesic αpq : [0, 1] −→ C satisfying
Ji(0) = 0 and J ′i (0) = Ei|p, where ‘‘J ′i ’’ denotes the covariant derivative of Ji along αpq. Observe that {J0(1), . . . , J3(1)} ⊂ TqM
will be linearly independent provided that q is not conjugate to p along αpq. Indeed this must be so, since C is contained
in the normal coordinate chart centered at p, no point in C is conjugate to p along a radial geodesic through p (this is an
important point to which we will return later; consult, e.g., [11, Prop. 10, p. 271]). Thus {J0(1), . . . , J3(1)} ⊂ TqM is a basis,
though it need not be orthonormal. In any case, use it to define ‘‘quasi-normal’’ coordinates (x̄i) centered at q ∈ C , via the
exponential map expq at q, in the same manner as in (2). Then, by construction,

∂

∂ x̄i


q

= Ji(1)

for each i = 0, . . . , 3. In fact, each

∂

∂ x̄i


q

=
∂

∂xi


q

, (4)
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