Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Isometric immersions of generalized Berger spheres in $\mathbb{S}^4(1)$ and $\mathbb{C}P^2(4)$

Qichao Li

School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, PR China

ARTICLE INFO

Article history: Received 8 March 2015 Accepted 21 July 2015 Available online 29 July 2015

MSC: 53A30 53C42

Keywords: Generalized Berger sphere Isometric immersion Conformal immersion

1. Introduction

In Riemannian geometry, the well-known *Berger metrics* are a 1-parameter family of metrics on the 3-sphere obtained by performing the canonical variation along fibers of a Hopf fibration. In this paper, we consider a 3-parameter family of metrics on \mathbb{S}^3 which contain the classical Berger metrics as special cases. Following A. Gray [1], denote by *x* the position vector of the unit sphere \mathbb{S}^3 in \mathbb{R}^4 . Regarding \mathbb{R}^4 as the set of quaternions, we obtain vector fields *ix*, *jx*, *kx* tangent to \mathbb{S}^3 . Let $\omega_1, \omega_2, \omega_3$ be the 1-forms on \mathbb{S}^3 given by $\omega_1(X) = \langle X, ix \rangle$, $\omega_2(X) = \langle X, jx \rangle$, $\omega_3(X) = \langle X, kx \rangle$, respectively. The 3-parameter family of metrics on \mathbb{S}^3 are given by:

$$g_{GB} = \alpha^2 \omega_1^2 + \beta^2 \omega_2^2 + \gamma^2 \omega_3^2$$

where α , β , γ are positive constants. Clearly, these can be viewed as natural generalizations of the classic *Berger metrics* on \mathbb{S}^3 . From now on, we will call (\mathbb{S}^3 , g_{GB}) the generalized Berger spheres.¹ When (α , β , γ) = (α , 1, 1), one obtains the classical Berger spheres.

The connections and curvatures of the metric g_{GB} can be computed using the Cartan structure equations

$$egin{array}{ll} d\omega_i &= \sum_j \omega_{ij} \wedge \omega_j, \qquad \omega_{ij} + \omega_{ji} = 0, \ d\omega_{ij} &= \sum_k \omega_{ik} \wedge \omega_{kj} - \Omega_{ij}, \end{array}$$

ELSEVIER

In this paper, we classify the isometric immersions of generalized Berger spheres (\mathbb{S}^3, g_{GB}) in $\mathbb{S}^4(1)$ and $\mathbb{C}P^2(4)$ (under proper assumption in the latter case) and show the explicit expressions of g_{GB} . As an application, we obtain infinitely many generalized Berger spheres admitting conformal immersions in \mathbb{R}^4 , which is closely related to a question of Peng and Tang (2010).

© 2015 Elsevier B.V. All rights reserved.

E-mail address: qichaoli@mail.bnu.edu.cn.

¹ Such generalized Berger spheres are also called "of Kaluza–Klein type" in [2].

http://dx.doi.org/10.1016/j.geomphys.2015.07.022 0393-0440/© 2015 Elsevier B.V. All rights reserved.

together with the relations $d\omega_1 = 2\omega_2 \wedge \omega_3$, $d\omega_2 = 2\omega_3 \wedge \omega_1$, $d\omega_3 = 2\omega_1 \wedge \omega_2$. In particular, the Ricci tensor of (S³, g_{GB}) is given by (see [2] for instance):

$$\operatorname{Ric}_{11} = \frac{2(\alpha^{2} - \beta^{2} + \gamma^{2})(\alpha^{2} + \beta^{2} - \gamma^{2})}{\alpha^{2}\beta^{2}\gamma^{2}}, \quad \operatorname{Ric}_{12} = \operatorname{Ric}_{13} = 0,$$

$$\operatorname{Ric}_{22} = \frac{2(\beta^{2} - \gamma^{2} + \alpha^{2})(\beta^{2} + \gamma^{2} - \alpha^{2})}{\alpha^{2}\beta^{2}\gamma^{2}}, \quad \operatorname{Ric}_{21} = \operatorname{Ric}_{23} = 0,$$

$$\operatorname{Ric}_{33} = \frac{2(\gamma^{2} - \alpha^{2} + \beta^{2})(\gamma^{2} + \alpha^{2} - \beta^{2})}{\alpha^{2}\beta^{2}\gamma^{2}}, \quad \operatorname{Ric}_{31} = \operatorname{Ric}_{32} = 0.$$

(1)

Several interesting geometric properties of (S^3, g_{GB}) are listed as follows:

- (i) The Ricci tensor is positive definite if and only if α^2 , β^2 , γ^2 can be regarded as three edges of some triangle by (1).
- (ii) (\mathbb{S}^3, g_{CB}) are homogeneous Riemannian manifolds with isometry group containing Sp(2), see [2] and [1]. (iii) (\mathbb{S}^3, g_{CB}) are \mathcal{A} -manifolds if and only if two of α , β , γ are equal, are \mathcal{B} -manifolds (or Ricci-parallel) if and only if $\alpha = \beta = \gamma$, see [2] and [1]. Recall that A-manifolds and B-manifolds, introduced by A. Gray, are two significant classes of Einstein-like Riemannian manifolds, see [3] for infinitely many inhomogeneous examples.

In the present paper, we are concerned with the isometric immersions of (\mathbb{S}^3, g_{CB}) in $\mathbb{S}^4(1)$ and $\mathbb{C}P^2(4)$ and the explicit expressions of the metrics. One of our main results states as follows:

Theorem 1.1. Let $f: (\mathbb{S}^3, g_{GB}) \to \mathbb{S}^4(1)$ be an isometric immersion of a generalized Berger sphere in $\mathbb{S}^4(1)$, then it must be one of the following:

- (i) $f(\mathbb{S}^3)$ is a geodesic sphere of $\mathbb{S}^4(1)$, and $g_{GB} = \sin^2 t (\omega_1^2 + \omega_2^2 + \omega_3^2)$, $0 < t < \frac{\pi}{2}$;
- (ii) $f(\mathbb{S}^3)$ is a Cartan hypersurface, which can be viewed as a tube of radius t $(0 < t < \frac{\pi}{2})$ around the Veronese surface, and $g_{GB} = 16\sin^2 t \omega_1^2 + 16\sin^2 (t + \frac{\pi}{3})\omega_2^2 + 16\sin^2 (t + \frac{2\pi}{3})\omega_3^2$

where $ds^2 = \omega_1^2 + \omega_2^2 + \omega_3^2$ defines a metric of constant sectional curvature 1 on \mathbb{S}^3 .

Remark 1.1. It is interesting to remark that the result above does not hold if we replace the ambient space by a higher dimensional unit-sphere. In fact, there exists a homogeneous embedding of SO(3) in $\mathbb{S}^5(1)$ by $f : SO(3) \to \mathbb{S}^5(1)$, $(x, y, x \times y) \mapsto \frac{1}{\sqrt{2}}(x, y)$, which induces a 2-fold covering immersion of \mathbb{S}^3 in $\mathbb{S}^5(1)$. It can be verified that the induced metric on \mathbb{S}^3 is given by $f^*ds^2 = 4\omega_1^2 + 2\omega_2^2 + 2\omega_3^2$ (cf. [2,4]), namely, (\mathbb{S}^3 , f^*ds^2) is a standard Berger sphere.

Remark 1.2. Recall that the Veronese surface is given by

$$V: S^{2}(\sqrt{3}) \to S^{4}(1), (x, y, z) \mapsto \left(\frac{xy}{\sqrt{3}}, \frac{yz}{\sqrt{3}}, \frac{zx}{\sqrt{3}}, \frac{1}{2\sqrt{3}}(x^{2} - y^{2}), \frac{1}{6}(x^{2} + y^{2} - 2z^{2})\right)$$

The tube of radius $t = \frac{\pi}{6}$ around the Veronese surface gives rise to the minimal Cartan hypersurface, whose metric is $ds^2 = 4\omega_1^2 + 16\omega_2^2 + 4\omega_3^2$ as pointed out in [5] and [6]. The tube of radius $t = \frac{\pi}{3}$ gives the *opposite* Veronese surface.

Denote by $\mathbb{C}P^m(4)$ the complex projective space endowed with the Fubini–Study metric of constant holomorphic sectional curvature 4. Weinstein [7] observed that certain geodesic hyperspheres in $\mathbb{C}P^m$ equipped with the induced metrics provide counterexamples to an extension of a result of Klingenberg. Little seems to be known about the Riemannian geometry of the other homogeneous hypersurfaces in $\mathbb{C}P^m$ (see [8,9]), such as the tubes over the complex quadrics. Cecil and Ryan ([8], pp. 494, Remark 4.3) proposed a study of the intrinsic geometry of these examples. The following result can be viewed as an attempt in this direction for the complex projective plane setting.

Theorem 1.2. Let $f : (\mathbb{S}^3, g_{GB}) \to \mathbb{C}P^2(4)$ be an isometric immersion of a generalized Berger sphere in $\mathbb{C}P^2(4)$. Suppose in addition that $f(\mathbb{S}^3)$ is a Hopf hypersurface in $\mathbb{C}P^2$. Then it must be one of the following:

- (i) $f(\mathbb{S}^3)$ is a geodesic sphere of $\mathbb{C}P^2$, and $g_{GB} = \sin^2 t \cos^2 t \omega_1^2 + \sin^2 t (\omega_2^2 + \omega_3^2)$, $0 < t < \frac{\pi}{2}$;
- (ii) $f(\mathbb{S}^3)$ is congruent to a tube of radius t $(0 < t < \frac{\pi}{4})$ around the complex quadric, and $g_{GB} = 4\sin^2 2t\omega_1^2 + 4\sin^2(t + \frac{\pi}{4})\omega_2^2 + 4\sin^2(t + \frac{\pi}{4})\omega_2^2$ $4\sin^2(t-\frac{\pi}{4})\omega_3^2$

where $ds^2 = \omega_1^2 + \omega_2^2 + \omega_3^2$ defines a metric of constant sectional curvature 1 on \mathbb{S}^3 .

Remark 1.3. The tube of radius $t = \frac{\pi}{8}$ around the complex quadric gives rise to the unique minimal hypersurface among the one-parameter family of tubes (cf. [8]). However, only the tube of radius $t = \frac{\pi}{12}$ carries a standard Berger metric, that is, $ds^2 = \omega_1^2 + 3\omega_2^2 + \omega_3^2$.

Download English Version:

https://daneshyari.com/en/article/1894628

Download Persian Version:

https://daneshyari.com/article/1894628

Daneshyari.com