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a b s t r a c t

In this paper, we classify the isometric immersions of generalized Berger spheres (S3, gGB)
in S4(1) and CP2(4) (under proper assumption in the latter case) and show the explicit
expressions of gGB. As an application, we obtain infinitely many generalized Berger spheres
admitting conformal immersions in R4, which is closely related to a question of Peng and
Tang (2010).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In Riemannian geometry, the well-known Berger metrics are a 1-parameter family of metrics on the 3-sphere obtained
by performing the canonical variation along fibers of a Hopf fibration. In this paper, we consider a 3-parameter family of
metrics on S3 which contain the classical Berger metrics as special cases. Following A. Gray [1], denote by x the position
vector of the unit sphere S3 in R4. Regarding R4 as the set of quaternions, we obtain vector fields ix, jx, kx tangent to S3. Let
ω1, ω2, ω3 be the 1-forms on S3 given by ω1(X) = ⟨X, ix⟩, ω2(X) = ⟨X, jx⟩, ω3(X) = ⟨X, kx⟩, respectively. The 3-parameter
family of metrics on S3 are given by:

gGB = α2ω2
1 + β2ω2

2 + γ 2ω2
3,

where α, β, γ are positive constants. Clearly, these can be viewed as natural generalizations of the classic Berger metrics on
S3. From now on, we will call (S3, gGB) the generalized Berger spheres.1 When (α, β, γ ) = (α, 1, 1), one obtains the classical
Berger spheres.

The connections and curvatures of the metric gGB can be computed using the Cartan structure equations

dωi =


j

ωij ∧ ωj, ωij + ωji = 0,

dωij =


k

ωik ∧ ωkj − Ωij,
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1 Such generalized Berger spheres are also called ‘‘of Kaluza–Klein type’’ in [2].
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together with the relations dω1 = 2ω2 ∧ ω3, dω2 = 2ω3 ∧ ω1, dω3 = 2ω1 ∧ ω2. In particular, the Ricci tensor of (S3, gGB) is
given by (see [2] for instance):

Ric11 =
2(α2

− β2
+ γ 2)(α2

+ β2
− γ 2)

α2β2γ 2
, Ric12 = Ric13 = 0,

Ric22 =
2(β2

− γ 2
+ α2)(β2

+ γ 2
− α2)

α2β2γ 2
, Ric21 = Ric23 = 0, (1)

Ric33 =
2(γ 2

− α2
+ β2)(γ 2

+ α2
− β2)

α2β2γ 2
, Ric31 = Ric32 = 0.

Several interesting geometric properties of (S3, gGB) are listed as follows:

(i) The Ricci tensor is positive definite if and only if α2, β2, γ 2 can be regarded as three edges of some triangle by (1).
(ii) (S3, gGB) are homogeneous Riemannian manifolds with isometry group containing Sp(2), see [2] and [1].
(iii) (S3, gGB) are A-manifolds if and only if two of α, β, γ are equal, are B-manifolds (or Ricci-parallel) if and only if

α = β = γ , see [2] and [1]. Recall that A-manifolds and B-manifolds, introduced by A. Gray, are two significant
classes of Einstein-like Riemannian manifolds, see [3] for infinitely many inhomogeneous examples.

In the present paper, we are concerned with the isometric immersions of (S3, gGB) in S4(1) and CP2(4) and the explicit
expressions of the metrics. One of our main results states as follows:

Theorem 1.1. Let f : (S3, gGB) → S4(1) be an isometric immersion of a generalized Berger sphere in S4(1), then it must be one
of the following:

(i) f (S3) is a geodesic sphere of S4(1), and gGB = sin2t(ω2
1 + ω2

2 + ω2
3), 0 < t < π

2 ;

(ii) f (S3) is a Cartan hypersurface, which can be viewed as a tube of radius t (0 < t < π
3 ) around the Veronese surface, and

gGB = 16sin2tω2
1 + 16sin2(t +

π
3 )ω2

2 + 16sin2(t +
2π
3 )ω2

3,

where ds2 = ω2
1 + ω2

2 + ω2
3 defines a metric of constant sectional curvature 1 on S3.

Remark 1.1. It is interesting to remark that the result above does not hold if we replace the ambient space by a higher
dimensional unit-sphere. In fact, there exists a homogeneous embedding of SO(3) in S5(1) by f : SO(3) → S5(1), (x, y, x×

y) →
1

√
2
(x, y), which induces a 2-fold covering immersion of S3 in S5(1). It can be verified that the induced metric on S3 is

given by f ∗ds2 = 4ω2
1 + 2ω2

2 + 2ω2
3 (cf. [2,4]), namely, (S3, f ∗ds2) is a standard Berger sphere.

Remark 1.2. Recall that the Veronese surface is given by

V : S2(
√
3) → S4(1), (x, y, z) →


xy
√
3
,
yz
√
3
,

zx
√
3
,

1

2
√
3
(x2 − y2),

1
6
(x2 + y2 − 2z2)


.

The tube of radius t =
π
6 around the Veronese surface gives rise to the minimal Cartan hypersurface, whose metric is

ds2 = 4ω2
1 + 16ω2

2 + 4ω2
3 as pointed out in [5] and [6]. The tube of radius t =

π
3 gives the opposite Veronese surface.

Denote by CPm(4) the complex projective space endowed with the Fubini–Study metric of constant holomorphic
sectional curvature 4.Weinstein [7] observed that certain geodesic hyperspheres in CPm equippedwith the inducedmetrics
provide counterexamples to an extension of a result of Klingenberg. Little seems to be known about the Riemannian
geometry of the other homogeneous hypersurfaces in CPm (see [8,9]), such as the tubes over the complex quadrics. Cecil
and Ryan ([8], pp. 494, Remark 4.3) proposed a study of the intrinsic geometry of these examples. The following result can
be viewed as an attempt in this direction for the complex projective plane setting.

Theorem 1.2. Let f : (S3, gGB) → CP2(4) be an isometric immersion of a generalized Berger sphere in CP2(4). Suppose in
addition that f (S3) is a Hopf hypersurface in CP2. Then it must be one of the following:

(i) f (S3) is a geodesic sphere of CP2, and gGB = sin2tcos2tω2
1 + sin2t(ω2

2 + ω2
3), 0 < t < π

2 ;

(ii) f (S3) is congruent to a tube of radius t (0 < t < π
4 ) around the complex quadric, and gGB = 4sin22tω2

1 +4sin2(t + π
4 )ω2

2 +

4sin2(t −
π
4 )ω2

3,

where ds2 = ω2
1 + ω2

2 + ω2
3 defines a metric of constant sectional curvature 1 on S3.

Remark 1.3. The tube of radius t =
π
8 around the complex quadric gives rise to the unique minimal hypersurface among

the one-parameter family of tubes (cf. [8]). However, only the tube of radius t =
π
12 carries a standard Berger metric, that

is, ds2 = ω2
1 + 3ω2

2 + ω2
3 .
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