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1. Introduction

Just as the 2-torus can be deformed along its translation action on itself to obtain the noncommutative 2-tori, whether
as C*-algebras, Fréchet pre-C*-algebras, or spectral triples, so too can more general smooth manifolds be deformed along
an action of an Abelian Lie group to yield noncommutative C*-algebras, Fréchet pre-C*-algebras, or spectral triples. In
the case of C*-algebras or Fréchet pre-C*-algebras, this process is Rieffel’s strict deformation quantisation [1], whilst in
the case of spectral triples and compact Abelian Lie groups, this process is Connes and Landi’s isospectral deformation [2],
which, following Yamashita [3], we call Connes-Landi deformation. In fact, as was first observed by Sitarz [4] and Varilly [5],
Connes-Landi deformation can be viewed as none other than the adaptation to spectral triples of strict deformation
quantisation along the action of a compact Abelian Lie group.

In this paper, we formulate and prove an extension of Connes’s reconstruction theorem for commutative spectral
triples [6] to spectral triples that, after the fact, will be Connes-Landi deformations along the action of a compact Abelian
Lie group G of spectral triples of the form (C*(X), L?>(X, E), D), where X is a compact oriented Riemannian G-manifold and
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D is a G-invariant essentially self-adjoint Dirac-type operator on a G-equivariant Hermitian vector bundle E — X, i.e., toric
noncommutative manifolds. More precisely, we propose a suitable abstract definition of 6-commutative spectral triples, which
closely resembles Connes’s abstract definition of commutative spectral triple [7,6] except for the specification of deformation
parameter 6 in the second group cohomology H? (G T) of the Pontryagin dual G of G, which completely governs the failure
of commutativity; in particular, 0-commutative spectral triples are just G-equivariant abstract commutative spectral triples.
Then, we show that the Connes-Landi deformation of a #-commutative spectral triple by 6’ € HZ(G T) is itself (6 + 67)-
commutative, thereby facilitating both quantisation from and dequantisation to G-equivariant commutative spectral triples,
to which we can apply Connes’s result.

In addition to extending Connes’s reconstruction theorem, we also clarify a number of aspects of the general theory of
Connes-Landi deformation. In particular, we use a refinement of the Connes-Dubois-Violette splitting homomorphism [8]
to show that for 6 € H2(G T) rational, viz, of finite order in the group HZ(G T), sufficiently well-behaved #-commutative
spectral triples are almost-commutative in the general, topologically non-trivial sense proposed by the author [9,10] and
studied by Boeijink and Van Suijlekom [11] and by Boeijink and Van den Dungen [12]. This generalises the now-folkloric
example of rational noncommutative 2-tori [13].

We begin in Section 2 by reviewing Rieffel’s theory of strict deformation quantisation of Fréchet pre-C*-algebras in the
case of the action of a compact Abelian Lie group [1, pp. 19-22]. In particular, we give a detailed, constructive account
of the deformation of G-equivariant finitely generated projective modules over G-equivariant Fréchet pre-C*-algebras,
generalising existing results on the deformation of G-equivariant vector bundles over G-manifolds [8,14]. In fact, we
obtain an explicit formula for the projection onto the deformation of a G-equivariant finitely generated projective module
corresponding to a given G-invariant projection onto the original module, generalising the concrete examples studied by
Connes and Landi [2, §§ II-11I] and by Landi and Van Suijlekom [15].

Next, in Section 3, we recall the general theory of Connes-Landi deformations or isospectral deformations, first defined
by Connes and Landi for T?-actions on concrete commutative spectral triples [2] and then extended by Yamashita to
arbitrary T?-equivariant spectral triples [3]. As Sitarz [4] and Varilly [5] first showed, this amounts to a simultaneous
strict deformation quantisation of the algebra A of a G-equivariant spectral triple (4, H, D) and of its G-equivariant
representation on the Hilbert space H. In particular, we clarify the role of the group H?(G, T) in parametrising Connes-Landi
deformations of a fixed G-equivariant spectral triple up to G-equivariant unitary equivalence, and then completely generalise
the isomorphisms amongst the Morita-Rieffel equivalences of smooth noncommutative n-tori parametrised by the densely-
defined SO(n, n|Z)-action on the universal cover Skew(n, R) = R"™1D/2 of H2(Z", T) = T""~D/2 as introduced by Rieffel
and Schwarz [16] and studied by Elliott and Li [17].

At last, in Section 4, we formulate and prove our extension of Connes’s reconstruction theorem for commutative spectral
triples [6, Theorem 1.1] to Connes-Landi deformations of G-equivariant commutative spectral triples. First, by analogy
with Connes’s abstract definition of commutative spectral triple [7,6], we propose an abstract definition of spectral triples
that, after the fact, will be Connes-Landi deformations of G-equivariant concrete commutative spectral triples, where
noncommutativity is entirely governed by a deformation parameter 6 € HZ(G T) through its associated alternating
bicharacter ¢ () € Hom(A? G, T).

Definition 1.1. Let (4, H, D) be a G-equivariant regular spectral triple, let 6 € HZ(E, T), and let p € N. We shall call
(s, H, D) a p-dimensional 6-commutative spectral triple if the following conditions all hold:

(0) Order zero: The algebra A is 6-commutative, viz,
VX, Y € G, Vay € Ay, by € Ay, byax = e(t (0) (X, y)) axby,

so that the G-equivariant x-representation L : A — B(H) of 4 can be deformed to a G-equivariant x-homomorphism
R : A°? — B(H), such that for all a, b € 4, [L(a), R(b)] = 0.

(1) Dimension: The eigenvalues {A,}nen of (D? + 1)~V/2, counted with multiplicity and arranged in decreasing order, satisfy
A =0m""P)asn — +oo.

(2) Order one: Foralla, b € 4, [[D, L(a)], R(b)] = 0.

(3) Orientability: Define gg : AP+ — A®CP+D by

(@ ®1 @ - ®ay) = — Z exp | 2wi Z t(0) Kriys X)) | (D700 ® ar(1) ® -+ - ® Ur(p)
! mzsp i<
7 (i)>7 ()
for isotypic elements ag € Ay, ..., aqp € Hx, of », and say that ¢ € A®P*D s 9-antisymmetric if g(c) = c. Define

7p : APCPHY — B(H) by
Yag, ai,...,a, € A, 7wp(do @ a1 ® -+ Q@ ap) := L(ap)[D, L(ay)]- - - [D, L(ap)].

There exists a G-invariant §-antisymmetric ¢ € A®®*+1 such that x := mp(c) is a self-adjoint unitary, satisfying
Vae A, Lax =xLa, [D,La)lx = (=D"""xID,L@)]
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