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a b s t r a c t

For n ≥ 3 point planar charges ej < 0, j = 1, . . . , n − 1, en > 0 exact Lagrange-type
solutions of their Coulomb equation ofmotion are found. For n > 3 all the negative charges
are identical and their masses are equal. These solutions describe a motion of the negative
charges along keplerian orbits around the immobile positive charge in such a way that
their coordinates coincide with vertices of a regular polygon. It is established that there
exist equilibrium configurations such that the equal negative charges are located at the
vertices of regular polygons centered at the positive charge. It is shown that there are no
Lagrange-type triangular solutions for Coulomb equation of motion of three charges. The
rectilinear Lagrange-type solution is shown to exist for it.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Maxwell–Lorentz (ML) equation of motion of arbitrary number of point charges, discussed in [1], is basic for plasma
and quantum physics. When charges do not emit radiation this equation is reduced to the Coulomb or Darwin equations,
derived in [1,2], which are difficult to solve (as the ML equation) due to their singular character. The important task of
mathematics is a construction of solutions of all these equation on the infinite time interval. As one considers Coulomb
systems then one tries to adapt ideas from the celestial mechanics exposed in a remarkable way in [3]. We showed in
[4,5] that it is possible to prove the existence of solutions for the Coulomb and Darwin equations on a finite time interval
excluding collisions between charges generalizing bounds from the celestial mechanics. In both cases the solutions are
holomorphic functions of time in a disc centered at the origin. In the Coulomb case we established in [4] that their closest
to the origin real singularity is generated by a collision. How one can avoid collisions in charge dynamics and construct it
on the infinite time interval? We give positive answer to this question producing exact solutions for the special array of n
charges ej < 0, j = 1, . . . , n − 1, en > 0. For n > 3 all masses of negative charges are equal, ej = −e0, j = 1, . . . , n − 1
and en > e0n. For n = 3 these conditions are also allowed but in general the charges and their masses may be different
provided e3 > −ej, j = 1, 2. We use the following remarkable fact: our systems for n > 3 with the positive charge e0n have
the equilibrium configurations for which the negative charges are located at the vertices of regular polygons centered at the
origin where the positive charge is placed if

e0n = 2−
3
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n−2
k=1


1 − cos

2πk
n − 1

−
1
2

. (1.1)

From the Earnshaw theorem mentioned in [6] it follows that these equilibria are unstable. In [7] there is a profound sketch
how to prove it.
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In general the existence of equilibrium configurations (they are absent in the celestialmechanics in fixed coordinate axes)
may offer an application of the Lyapunov center theoremand as a result a construction of periodic solutions of corresponding
equations of motion. This construction is produced by us in [8] for two and three equal negative charges at a line interacting
with fixed two positive charges outside the line.

The presented here exact solutions are periodic functions in time and describe the motion of every negative charge as
a keplerian motion with a fixed at the origin positive charge. Besides the negative charges are tied to vertices of regular
polygons all the time. In the simplest case the negative charges rotate around the positive charge with the same frequency.
This is described by the following solution xk(t) ∈ C of the equation of motion for negative charges

xk(t) = zkeiu(t)r(t), r(t) > 0, (1.2)

where zk, u(t), r(t) satisfy the first, second and third structure equations, respectively, the first of which is stationary and zk
does not depend on time. If one proves that e0n < (n− 1)e0 then the found solution will establish the existence of a classical
atom. We prove this for n < 14 in the Proposition 2.2.

We started this investigation trying to find the Lagrange-type triangular solutions of the Coulomb equation of motion
for three planar charges. It is known that the Coulomb point charges ej have the equilibrium configuration on a line such
that the negative charges are located at the same distance from the positive charge if e1 = e2 = −e0, 4e3 = e0 > 0. If
4e3 > e0, the masses of the equal charges are also equal and they are at the same distance from the positive charge on a
common line then it is natural to expect that they can rotate around the positive immobile charge in such the configuration
(the centrifugal force will be equilibrated by the attraction). We confirm this conjecture in the Proposition 3.2 and show in
the Proposition 3.3 that a rectilinear uniform rotation of the charges took place if e3 ≥ −ej, j = 1, 2. In the Proposition 3.3
we prove that there are no triangular Lagrange-type of the uniformly rotating three charges. The ideas of the proofs are
inspired by [3].

In the second section we explain in the Proposition 2.1 how to construct the exact solutions in Coulomb systems when
negative charges are equal and there are equilibrium configurations in the form of regular polygons. Theorem2.1 establishes
their existence.

2. General dynamics

Let us consider the Coulomb system of n charges ej ∈ R, j = 1, . . . , n with masses mj > 0. Their coordinates xj ∈ Rd

obey the Coulomb equation of motion

mj
d2xj
dt2

= −
∂U(x(n))

∂xj
, j = 1, . . . , n,

where

x(n) = (x1, . . . , xn) ∈ Rdn, U(x(n)) =


1≤j<k≤n

ejek
|xj − xk|

, |x|2 = (x1)2 + · · · + (xd)2.

Let d = 2 and xk = x1k + ix2k ∈ C. Then the Lagrange-type solutions are determined by the equalities xk = zkq(t) which give

|xj − xk| = |zj − zk||q|.

From
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=

n
k=1,k≠j
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it follows that
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Let

q(t) = eiu(t)r(t), r(t) > 0

and the following first structure equation hold
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Then the equation of motion yields the following equation
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