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a b s t r a c t

Conformally flat spacetimeswith an elastic stress–energy tensor having diagonal trace-free
anisotropic pressure are investigated using 1 + 3 formalism. The 1 + 3 Bianchi and Jacobi
identities and Einstein field equations are written for a particular case with a conformal
factor dependent on only one spatial coordinate. Solutions with non zero anisotropic
pressure are obtained.
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1. Introduction

The theory of elasticity in the context of general relativity was developed in themid twentieth century. The need for such
a theory came in the late 1950s with Webers bar antenna for gravitational waves [1], in order to explain how these waves
interact with elastic solids. Actually, for this phenomena the weak-field approximation was sufficient in the treatment of
the problem given by Weber. Only in 1973, in a paper by Carter and Quintana [2], did a fully developed nonlinear theory
of elasticity adapted to general relativity appear, remaining to this day a standard reference in the field, although the basic
theoretical framework of this theory had already been given by Souriau in [3]. Also before the article by Carter and Quintana,
work byMauginmade considerable contributions to the field [4]–[5]. Lately, the theory of elasticity in general relativity was
reconsidered byMagli andKijowski [6]–[7] andChristodoulou [8], in thiswork they explore the gauge character of relasticity.
Authors such as Beig and Schmidt, have proven several existence and uniqueness theorems [9]. More recently, Karlovini
and Samuelsson have given a self contained formulation of general relativistic elasticity in [10]. They applied the theory
of elasticity to spherically symmetric spacetimes and studied radial and axial perturbations [11–13]. Park [14] established
existence theorems for spherically symmetric static solutions for elastic bodies and Brito, Carot and Vaz [15] have obtained
static shear-free and non-static shear-free solutions for spherically symmetric elastic spacetimes. Calogero and Heinzle [16]
studied the dynamics of Bianchi type I elastic spacetimes.

In this work, we study a very simple elastic model with a diagonal trace-free anisotropy pressure tensor using the 1 + 3
extended frame approach and following the notation given in Uggla [17]. We note that work on the covariant 1+3 splitting
of fluid spacetime geometries was first initiated by Eisenhart and Synge and continued by Gödel, Raychaudhuri and other
authors such as Schöcking, Ehlers, Sachs and Trömper (related Refs. [18–21]). In the paper by Uggla the basic dynamical
equations of the extended 1 + 3 orthonormal frame approach are explicitly given in terms of variables that are naturally
adapted to the 1 + 3 structure, and they include the Bianchi and Jacobi identities, the Einstein field equations and the
commutators. This formulation is analogous to the Newmann Penrose approach [22] in the sense that a null congruence is
replaced by a timelike congruence. The general properties of the 1 + 3 orthonormal frame can be found in books such as
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Wald [23] and Felice and Clarke [24] and in Edgar [25]. Several applications have been discussed in Pirani [26], Ellis [27] and
MacCallum [28]. A more complete list of references can be found in [17].

The organisation of this paper is as follows. In Section 2we outline the theory of the 1+3 formalism and present the 1+3
split of the commutators, curvature variables and their field equations, namely Bianchi and Jacobi identities and Einstein
field equations. Wewill follow the same notation convention for tensor indices as used in [17]. Spacetime coordinate tensor
indices will be denoted by letters from the second half of the Greek alphabet (µ, ν, ρ, . . . = 0− 3)while spatial coordinate
indices are represented by letters from the second half of the Latin alphabet (i, j, k, . . . = 1, . . . , 3). Orthonormal frame
indices will be denoted by letters from the first half of the Latin alphabet (a, b, c, . . . = 0, . . . , 3) while spatial frame
indices are chosen from the first half of the Greek alphabet (α, β, γ , . . . = 1 − 3). In Section 3 we give a summary of the
theory of relativistic elasticity. In Section 4 we study conformally flat spacetimes with a conformal factor that depends only
on one spatial coordinate andwith an elastic source given by a diagonal trace-free anisotropic pressure tensor with only one
independent component, using the 1+ 3 formalism. We calculate the 1+ 3 equations for a very simple case and determine
solutions with non zero anisotropic pressure.

2. 1 + 3 formalism

When studying a dynamical model in general relativity possessing an energy–momentum-stress tensor with a timelike
eigendirection, for example perfect fluids, the associated timelike vector field u on the spacetime (M, g) determines the
projection tensors U and h, which project parallel and orthogonal to u in the tangent space at each point p ∈ (M, g),
respectively. The vector u is chosen to be a unit timelike vector

uµuµ = −1, (1)
and the projection tensors U and h are defined by

Uµν = −uµuν, (2)

hµν = δµν + uµuν . (3)
Due to the existence of this singled out timelike direction u a covariant 1+3 tensor decomposition of all geometrical objects
of physical value can be made using U and h.

∇ will represent the covariant derivative and ηµνρσ the totally antisymmetric permutation tensor.
The well known kinematical fields associated with the timelike congruence u are defined by

u̇µ = hµνuρ∇ρuν, (4)

Θ = hµν∇µuν, (5)

σµν =


hρ(µhσ ν) −

1
3
hµνhρσ


(∇ρuσ ), (6)

ωµν = −hρ [µhσ ν](∇ρuσ ), (7)
where u̇µ is the acceleration vector, Θ the rate of expansion scalar, σµν is the rate of shear tensor and ωµν is the vorticity
tensor. Note that σµν is symmetric and tracefree and ωµν is anti-symmetric. The magnitude of the rate of shear σ , the
vorticity vector ωµ and the magnitude of the vorticity ω are defined as

σ 2
=

1
2
σµνσ

µν, (8)

ωµ =
1
2
ηµνρσωνρuσ , (9)

ω2
=

1
2
ωµνω

µν
= ωµω

µ. (10)

The vector field u is hypersurface forming if ω = 0.
In the orthonormal frame approach one chooses at each point of the spacetime manifold (M, g) a set of four linearly

independent 1-forms ea such that the line element is given by

ds2 = ηabeaeb, (11)
where ηab = diag[−1, 1, 1, 1] is the constant Minkowskian frame metric. The vectors ea represent the dual basis.

In the 1 + 3 orthonormal frame formalism one aligns the timelike direction of the orthonormal frame with the tangent
of the preferred timelike congruence (e0 = u).

2.1. Commutators

The commutator functions are defined by

[ea, eb] = γ c
abec, (12)
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