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a b s t r a c t

We investigate the causal structure of two-sheeted space-times using the tools of
Lorentzian spectral triples. We show that the noncommutative geometry of these spaces
allows for causal relations between the two sheets. The computation is given in detail when
the sheet is a 2- or 4-dimensional globally hyperbolic spin manifold. The conclusions are
then generalised to a point-dependent distance between the two sheets resulting from the
fluctuations of the Dirac operator.
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1. Introduction

Among thepseudo-Riemannianmanifolds, the Lorentzian ones formadistinguished class because they can accommodate
a causal structure. The latter has very deep consequences for physicalmodels as it sets fundamental restrictions on the evolu-
tion of physical processes. On themathematical side, the causal structure on a LorentzianmanifoldM induces a partial order
relation on the set of points of M. The properties of this order have been studied by several authors (see for instance [1–4]).

It turns out that the notion of a partial order can be generalised to the realm of noncommutative spaces [2]. This is to
be understood as the existence of a partial order relation on the space of states of a, possibly noncommutative, C∗-algebra
A. Via the Gelfand–Naimark theorem, it can be shown that a noncommutative partial order is equivalent to a usual partial
order on Spec(A)whenever A is commutative.

Inspired by these results, we proposed in [5] an extended notion of a causal order suitable for noncommutative
geometries (see also [6] for a less formal review). Our definition is embedded in the realm of Lorentzian spectral triples [7]
and recovers the classical causal structure for globally hyperbolic spin manifolds [5, Theorem 7]. We note that there exists
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an alternative approach based on the same ideas [2,8,9], but focusing on more general orders without any specific relation
to the metric (so not related to any Dirac operator).

To explore the properties of the proposed noncommutative causal structure we considered in [10] a toy-model based on
a noncommutive spectral triple


S(R1,1)⊗M2(C), L2(R1,1, S)⊗C2,D̸ ⊗1+γ ⊗diag{d1, d2}


. It turned out that the triple at

hand has a well-defined and highly non-trivial causal structure. It exhibits a number of interesting and unexpected features
leading to constraints on the motion not only in the space-time component, but also in the internal space of the model.
However, due to the complexity of the computations, we were not able to generalise our results to higher-dimensional,
curved, space-times.

In this paper we investigate another toy-model – a two-sheeted space-time – based on a product of a globally hyperbolic
space-time M and a finite spectral triple


AF ,HF ,DF


, with AF = C ⊕ C, HF = C2 and DF =


0 m
m∗ 0


. Since the algebra

AF is a commutative one and has only two pure states, the total space of physical states is isomorphic (at the set-theoretic
level) toM⊔M. However, the resulting product geometry is non-trivial because the off-diagonal Dirac operatorDF provides
a link between the two sheets.

For this particular model we establish a procedure of determining the causal structure with M being a general even-
dimensional globally hyperbolic manifold. We apply it explicitly in dimensions 2 and 4. Moreover, the adopted technique
allows us to generalise the results to the case when the mass parameterm is replaced with a complex scalar field.

The choice of the C ⊕ C model is also motivated on physical grounds. The noncommutative Standard Model of particle
physics, based on the algebra ASM = C⊕H⊕M3(C), is often described as a two-sheeted space-time [11]. Indeed, the space
of pure states of the electroweak sector C ⊕ H consists of two points and although P(M3(C)) ∼= CP2, all of its points are
separated by an infinite distance as the Dirac operator DF commutes with the M3(C) part of the algebra [12, Remark 5.1].
Our results on the M2(C)model suggest that whenever two states are separated by an infinite distance, no causal relation
between them is possible. Hence, the chosen finite algebra is a good toy-model for the full Standard Model based on ASM. In
this paper we will focus on the mathematical details of the model, postponing the discussion of the physical interpretation
to a forthcoming one [13].

The paper is organised as follows: In the next section we recollect the basic definitions and properties of Lorentzian
spectral triples and noncommutative causal structures. In Section 3 we describe the features of the two-sheeted model
and present the main result of the paper concerning the causal structure. We work out in detail the cases of space-time
dimensions 2 and 4 in Sections 4 and 5 respectively. In Section 6 we study the impact of the inner fluctuations of the Dirac
operator on the causal structure. We conclude with some general remarks on the applicability of the developed techniques
to other almost commutative models.

2. Causality in Lorentzian noncommutative geometry

As a prelude to the introduction of causality in noncommutative geometry, we need to recollect some elements of the
theory of Lorentzian spectral triples. The usual definition of a spectral triple, as introduced by Connes [14,15], allows only to
deal with (typically compact) Riemannian spaces, while the notion of causality requires non-compact Lorentzian spaces. The
first generalisation of the axioms to pseudo-Riemannian signatures was done in [7] and led to various definitions [16–20],
which have however a common basis—the Krein space. The theory of pseudo-Riemannian spectral triples is still very recent
and undergoes an intense development.

Belowwe present a rather restrictive definition of a Lorentzian spectral triple following our previous works [6,20]. It has
the advantage of guaranteeing a signature of Lorentzian type and allows us to recover a globally hyperbolic spin manifold
in the commutative case. The following axioms can also be considered as a particular case of all other existing approaches.

Definition 1. A Lorentzian spectral triple is given by the data (A, A,H,D,J)with:
• A Hilbert space H .
• A non-unital dense ∗-subalgebra A of a C∗-algebra, with a faithful representation as bounded operators on H .
• A preferred unitisation A of A, which is also a dense ∗-subalgebra of a C∗-algebra, with a faithful representation as

bounded operators on H and such that A is an ideal of A.
• An unbounded operator D, densely defined on H , such that:

– ∀a ∈ A, [D, a] extends to a bounded operator on H ,
– ∀a ∈ A, a(1 + ⟨D⟩

2)−
1
2 is compact, with ⟨D⟩

2
=

1
2 (DD

∗
+ D∗D).

• A bounded operator J on H with J2
= 1, J∗

= J, [J, a] = 0, ∀a ∈ A and such that:
– D∗

= −JDJ on Dom(D) = Dom(D∗) ⊂ H ;

– there exist a densely defined self-adjoint operator T with Dom(T ) ∩ Dom(D) dense in H and with

1 + T 2

− 1
2 ∈ A,

and a positive element N ∈ A such that J = −N[D, T ].

We say that a Lorentzian spectral triple is even if there exists a Z2-grading γ of H such that γ ∗
= γ , γ 2

= 1, [γ , a] = 0
∀a ∈ A, γJ = −Jγ and γD = −Dγ .

The role of the operator J, called fundamental symmetry, is to turn the Hilbert space H into a Krein space on which the
operator iD is essentially self-adjoint [7,21]. As proved in [6,20], the condition J = −N[D, T ] guarantees the Lorentzian
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