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a b s t r a c t

The group of conformal diffeomorphisms and the group of causal automorphisms on
two-dimensional globally hyperbolic spacetimes are clarified. It is shown that if two-
dimensional spacetimes havenon-compact Cauchy surfaces, then the groups are subgroups
of that of two-dimensionalMinkowski spacetime, and if two-dimensional spacetimes have
compact Cauchy surfaces, then the groups are subgroups of that of two-dimensional Ein-
stein’s static universe. Also, the groups of such spacetimes are explicitly calculated by use
of universal covering spaces.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Liouville’s Theorem states that there are some kind of rigidity on conformal structures of semi-Euclidean space Rn
ν when

n ≥ 3. In other words, any conformal diffeomorphisms defined on an open subset U of Rn
ν are generated by homotheties,

isometries and inversions [1–4]. Since inversion has singularity, to study conformal structure, we need conformal compact-
ifications [5,6].

In contrast to this, in two-dimensional Euclidean space, it is known that any conformal diffeomorphisms defined on an
open subset of R2 are homography or anti-homography and these can be seen as a conformal map defined on Riemann
sphere [5].

In this paper, causal structures and conformal structures of two-dimensional globally hyperbolic spacetimes are ana-
lyzed. Though some authors introduce conformal compactification of two-dimensional Minkowski spacetime, if we confine
the subject to spacetimes with Cauchy surfaces, we can explicitly obtain their groups of conformal diffeomorphisms with-
out compactifications. It is known that the group of conformal diffeomorphisms can be obtained by the group of causal
automorphisms if the dimension of the Lorentzian manifold is bigger than two [7–9] and so, in high dimensional Lorentzian
manifolds to study conformal structures is equivalent to study causal structures. However, this is not the case for two-
dimensional spacetimes.

For this reason, to study conformal or causal structure of two-dimensional spacetimes has sufficient meanings and so, in
this paper, we study coherently both causal and conformal structures of two-dimensional spacetimes with Cauchy surfaces
by tools developed in Section 3. One of themain results is that if two-dimensional spacetimes have non-compact Cauchy sur-
faces, then their structure groups are subgroups of that of two-dimensionalMinkowski spacetimeR2

1, and if two-dimensional
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spacetimes have compact Cauchy surfaces, then their structure groups are subgroups of that of two-dimensional Einstein’s
static universe E. In this sense, R2

1 and E play the role of co-universal objects among two-dimensional globally hyperbolic
spacetimes.

2. Preliminaries

A Lorentzian manifold is a differentiable manifold with the signature of metric as (−,+, . . . ,+). A tangent vector
v ∈ TpM is called timelike, null and spacelike if g(v, v) is less than 0, equal to 0 and greater than 0, respectively. We
say that a tangent vector is causal if it is timelike or null. It is easy to see that the set of all causal vectors has two connected
components and we choose one of them to be future-directed vectors and the other to be past-directed vectors. It is a well-
known fact that a differentiable manifoldM has a Lorentzian metric if and only ifM has a nowhere-vanishing vector field X .
This nowhere-vanishing vector field can be used to define a time-orientation which determines future-directed vectors. We
remark that not all Lorentzian manifolds are time-orientable. (See p. 2 of Ref. [10] or Proposition 37 of Chapter 5 in [11].)
Throughout this paper, we are interested in those Lorentzian manifolds which are time-oriented. By spacetime, we mean a
Lorentzian manifold with time-orientation.

We denote by x ≤ y if there exists a continuous curve γ from x to y such that for each t , there exists a neighborhood U
of γ (t) such that for any γ (t1) and γ (t2) in U with t1 < t2, there exists a smooth curve α : [0, 1] → U from γ (t1) to γ (t2),
of which the tangent vector α′(t) is future-directed and causal for all t . When x ≤ ywe say that x and y are causally related
or y lies in the future of x. By use of convex normal neighborhood, it can be shown that x ≤ y if and only if there exists a
piecewise differentiable curve γ such that γ ′(t) is future-directed and causal for each t .

A bijective map f : M → N between two Lorentzianmanifolds is called a causal isomorphism (anti-causal isomorphism,
respectively) if f satisfies the condition that x ≤ y if and only if f (x) ≤ f (y) (f (x) ≥ f (y), respectively). When the domain of
definition and the codomain coincide, we call the causal isomorphism as a causal automorphism.

It turns out that causal relation of a Lorentzian manifold has close relations to conformal structure of the given manifold.
In 1964, Zeeman has shown that any causal isomorphism on n-dimensional Minkowski spacetime Rn

1 is generated by
homothety and isometries if n ≥ 3 [12]. In 1976, Hawking et al. had shown that if a spacetime is strongly causal, causal
isomorphism becomes a smooth conformal diffeomorphism [8]. In 1977, Malament had shown that causal isomorphism on
any spacetime is a smooth conformal diffeomorphism [9]. However, as authors commented, their results do not hold for
n = 2. In two-dimensional Minkowski spacetime, there are many more continuous causal isomorphisms [13,14].

3. Causal structure and covering space

Given a covering map π : M → M where M is a semi-Riemannian manifold with metric g , we define the metric of
M by use of pull-back g = π∗g . Then π is a smooth local isometry. When M is a Lorentzian manifold, we define a time-
orientation on M in such a way that π is a time-orientation preserving local isometry. To be precise, if a vector field Xa

defines a time-orientation onM , then the pull-back 1-form π∗Xa can be used to define the time-orientation onM .
A diffeomorphism φ : M → M is called a covering transformation ifπ ◦φ = π . It is easy to see that the set of all covering

transformations of π : M → M forms a group and we denote it by D.

Theorem 3.1. Let πM : M → M and πN : N → N be universal covering maps of spacetimes. If f : M → N is a causal
isomorphism, then any lift of f ◦ πM through πN is a causal isomorphism.

Proof. Choose x ∈ M and x ∈ π−1
M (x). Let y = f (x) and choose y ∈ π−1

N (y).
Since M is simply-connected, we can lift f ◦ πM through πN and so we get a map f : (M, x) → (N, y) that satisfies

πN ◦ f = f ◦ πM .
Since N is simply-connected, we can lift f −1

◦ πN through πM and so we get a map f −1 : (N, y) → (M, x) that satisfies
πM ◦ f −1 = f −1

◦ πN .
By combining the above two equalities, we have πM ◦ f −1 ◦ f = πM and πN ◦ f ◦ f −1 = πN .
Since f −1 ◦ f (x) = x and f ◦ f −1(y) = y, by the uniqueness of lifts, we must have f −1 ◦ f = IdM and f ◦ f −1 = IdN .

Therefore, f is a bijection fromM to N with its inverse (f )−1
= f −1.

We now show that f is a causal isomorphism. Choose x1 and x2 in M such that x1 ≤ x2 and let α be a future-directed
causal curve from x1 to x2. Then, since πM is a time-orientation preserving local isometry and f is a causal isomorphism, the
curve f ◦ πM ◦ α is a future-directed causal curve in N .

Since πN ◦ f = f ◦πM , f ◦α is the lift of the causal curve f ◦πM ◦α through πN . Since πN is a time-orientation preserving
local isometry, f ◦ α is a future-directed causal curve and thus we have f (x1) ≤ f (x2).

By applying the same argument for f −1 and f −1, we can show that x1 ≤ x2 if and only if f (x1) ≤ f (x2) and so f is a causal
isomorphism. �

Under some mild conditions, any causal isomorphisms between two Lorentzian manifolds are smooth conformal
diffeomorphisms [7–9]. However, this is not the case when the dimension of Lorentzian manifold is two, and thus we need
to prove the previous theorem in topological terms [12–14].

On the other hand, if we assume sufficient smoothness, we can prove the following.
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