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a b s t r a c t

Homogeneous generalized holomorphic structures in the context of homogeneous prin-
cipal fiber bundles are investigated. They are characterized in terms of Lie algebra data,
and the generalized Dolbeault cohomology groups associated to a homogeneous general-
ized holomorphic vector bundle are identifiedwith certain relative Lie algebra cohomology
groups. We also provide some examples, using generalized flag manifolds.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Generalized complex (GC for short) geometry is a common format for complex geometry and symplectic geometry,
initiated to set up a framework for certain topics in string theory.

Generalized holomorphic (GH for short) vector bundles are the generalized complex analogue of holomorphic vector
bundles in classical complex geometry, including flat bundles over symplectic manifolds, co-Higgs bundles and holomor-
phic Poisson modules as extreme examples. These examples are also the most studied cases up to date. For some details
concerning these examples, see [1–5].

However, to construct more general GH vector bundles is not that easy. Instead of considering GH vector bundles, the
author has introduced the notion of GH structures in the context of generalized principal fiber bundles in [6], and developed
a related deformation theory in [7]. This paper then is a continuation of those two papers, motivated by the attempt to find
more general examples.

One way to construct principal fiber bundles is through the theory of homogeneous spaces, which often provides good
examples for testing geometrical ideas; meanwhile, invariant GC structures on homogeneous manifolds have already been
studied by B. Milburn [8]. Based on these, this paper is then devoted to considering homogeneous principal fiber bundles
and trying to characterize homogeneous GH structures (see Section 3 for the precise notion and structure) in terms of Lie
algebra data. It turns out that this really provides a convenient method of constructing GH structures.

In the deformation theory of [7], when a given GH structure is deformed, the underlying GC structure is also allowed to
vary togetherwith the GH structure. To apply this theory successfully, a preliminary knowledge of the generalized Dolbeault
cohomology associated to the initial GC structure and GH structure is, more or less, necessary. Therefore, the generalized
Dolbeault cohomology associated to a homogeneous GH vector bundle is also investigated in the context of the theory of Lie
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algebra cohomology. This may provide an algebraic way to compute the relevant cohomology groups in some special cases
in the future.

The paper is organized as follows. In Section 2, we recall the necessary preliminaries of generalized (complex) geometry.
Although we will mainly deal with a special kind of exact Courant algebroids—namely the generalized tangent bundles of
manifolds without a twist, we still start from a more general setting for our later convenience. The following sections are
devoted to K -homogeneous GH structures for K a connected Lie group: In Section 3, we characterize a homogeneous GH
structure in terms of Lie algebra data (cf. Theorems 3.2 and 3.3). In Section 4, we prove that the generalized Dolbeault
cohomology associated to a homogeneous GH vector bundle is equivalent to certain relative Lie algebra cohomology
(cf. Theorem 4.1). When K is compact, this allows a canonical decomposition of the cohomology groups as K -modules
(cf. Theorem 4.2). With the aid of the preceding results, Section 5 produces some examples of homogeneous GH structures
using generalized flag manifolds. The decomposition mentioned above is also illustrated by two very simple examples.

2. Backgrounds

We collect the necessary basics of generalized geometry in this section. The main references are [9–11,6]. Throughout
the paper,M will always be a connected orientable smooth manifold.

Generalized geometry is the geometry related to the generalized tangent bundle TM := TM ⊕ T ∗M , or more generally,
a so-called exact Courant algebroid E.

Definition 2.1. An exact Courant algebroid overM is a real vector bundle E → M with a bracket [·, ·]c (Courant bracket) on
Γ (E), a nondegenerate symmetric bilinear form ⟨·, ·⟩, and an anchor map π : E → TM , satisfying the following conditions
for all e1, e2, e3 ∈ Γ (E) and f ∈ C∞(M):
• π([e1, e2]c) = [π(e1), π(e2)],
• [e1, [e2, e3]c]c = [[e1, e2]c, e3]c + [e2, [e1, e3]c]c ,
• [e1, fe2]c = f [e1, e2]c + (π(e1)f )e2,
• π(e1)⟨e2, e3⟩ = ⟨[e1, e2]c, e3⟩ + ⟨e2, [e1, e3]c⟩,
• [e1, e1]c =

1
2D⟨e1, e1⟩,

• 0 −→ T ∗M
π∗

−→ E
π

−→ TM −→ 0 is exact,

where D = π∗
◦ d : C∞(M) → Γ (E) and E∗, E are identified using ⟨·, ·⟩.

Given an exact Courant algebroid E, one can find an isotropic splitting s : TM → E, which has a curvature form
H ∈ Ω3

cl(M) defined by

H(X, Y , Z) = ⟨[s(X), s(Y )]c, s(Z)⟩, X, Y , Z ∈ Γ (TM).

By the bundle isomorphism s + π∗
: TM ⊕ T ∗M → E, the Courant algebroid structure can be transported onto TM . Then

the pairing ⟨·, ·⟩ is the natural one, i.e. ⟨X + ξ, Y + η⟩ = ξ(Y )+ η(X), and the Courant bracket is

[X + ξ, Y + η]H = [X, Y ] + LXη − ιYdξ + ιY ιXH,

called the H-twisted Courant bracket. E has more symmetries than TM . Besides the usual diffeomorphisms preserving the
cohomology class [H], a 2-form b also gives rise to an automorphism of E called a B-transform: eb(A) = A + ιπ(A)b for
A ∈ Γ (E).

An isotropic subbundle of E is called a generalized distribution and called integrable if it is involutive under the Courant
bracket. An integrable maximal generalized distribution is called a Dirac structure. These notions can be complexified and
what interests us is the following complex Dirac structure1:

Definition 2.2. A GC structure in E is an orthogonal complex structure J of E, such that the i-eigenbundle L ⊂ EC of J is
integrable. We call (M, J) a GC manifold.

A GC manifold is always of even dimension, say, 2m. Two extreme GC structures are symplectic and complex structures.
Let E = TM with H = 0. If ω is a symplectic structure, then L = {X − iω(X)|X ∈ TCM}; if J is a complex
structure, then L = T0,1 ⊕ T ∗

1,0. A more complicated example is a holomorphic Poisson manifold (M, J, β), for which,
L = {X + ξ + β(ξ)|X + ξ ∈ T0,1 ⊕ T ∗

1,0}.
We will use J and L interchangeably to label the GC structure under consideration. By the pairing, L∗ can be identified

with L, and a differential dL : Γ (∧k L) → Γ (∧k+1 L) can be defined: for σ ∈ Γ (∧k L), ai ∈ Γ (L),

dLσ(a0, . . . , ak) =


i

(−1)iπ(ai)σ (a0, . . . ,ai, . . . , ak)
+


i<j

(−1)i+jσ([ai, aj]c, a0, . . . ,ai, . . . ,aj, . . . , ak), (2.1)

1 We use VC to denote the complexification of a real vector space or bundle V .
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