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a b s t r a c t

We formulate geodesics in terms of a parallel transfer of a particle state vector transformed
by local Lorentz and Yang–Mills symmetry groups. This formulation is based on horizontal
fields and requires a canonical distance form. Arguments are presented in favour of scaling
distance in our space–time with a scalar field.
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1. Introduction

Classical physics describes motion of particles under an action of classical fields. Classical particles are usually assumed
to be structureless material points. Classical fields are produced by charges that attract or repel each other. It is also con-
ventionally assumed that elementary charges (or simply elementary particles) of classical physics are point-like and have
vanishing spatial sizes. (This follows from the fact that classical solutions with charge distributed in some area of space are
normally not stable. Hence unknown additional forces are needed to stabilize elementary particles if they were to occupy
some finite region in space.) The classical picture therefore contains a space filledwith delta-like charges and fields described
by field potentials everywhere except points of charge singularities.

It is also widely accepted that classical gauge fields represent connections in a fibre bundle associated with a particle
representation transforming under Lorentz and a local symmetry group of particle interactions [1]. There exists an asym-
metry in dealingwith particle representations and connections in classical physics: connections enter the schemeof classical
physics (as field potentials) while particle representations (fibre co-ordinates on which these connections act in an appro-
priate associated form) often do not. For example, electromagnetic 4-potential (that represents connection in a space of
complex particle representations) is an element of classical physics, while complex particle representations are not. As a
result, fields lose their geometrical meaning in classical physics and appear to be ad-hoc assumptions of classical dynamics.
It seems natural to eliminate the asymmetry and restore geometrical meaning of classical fields by adding an internal struc-
ture to a classical particle. Here we discuss a possible generalization of classical physics that incorporates local symmetries
of particle interactions. We restrict ourselves to classical physics of particles whose behaviour is defined by a local state
associated with a particle ‘‘singularity’’.

2. Preliminaries

Let us suppose that the space of a classical particle is an associated fibre bundle E(M, F ,G, P), where M is the base
manifold, F is the manifold on which the group G acts on the left (F can be described in terms of particle states |φ⟩). We
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reformulate geodesics of M in terms of the parallel transport of a particle state vector |φ⟩ instead of the parallel transfer
of a tangent vector. To perform this task, we consider a definition of geodesics based on horizontal fields [2]. A standard
horizontal vector field B(ξ) is defined through a set of equations:

ω(B(ξ)) = 0
θ(B(ξ)) = ξ,

(1)

where ξ belongs toRn (n is the dimension ofM). Here,ω and θ are the connection and canonical forms of the principal linear
fibre bundle, respectively [2]. Ref. [2] shows that an integral curve of the horizontal vector field B projects onto geodesics
under natural projection toM . This provides a definition of geodesics as a solution of a system

∇ẋu = u̇ + ω̂(ẋ) · u = 0
θ(ẋ) = u, (2)

where u is an Rn-vector generated by the canonical form θ(ẋ) and ∇ẋu, ω̂(ẋ), θ(ẋ) are the interior products ιẋ∇u, ιẋω, ιẋθ .
Locally (on an open subset U ⊂ M) the principal fibre bundle P(M,G) can be trivialized as P(M,G) ∼ M × G and hence
expressed as P = (π(p), ϕ(p)), where p ∈ P ,π(p) is the projection onM andϕ(p) is the fibre co-ordinates. This gives natural
cross-section σ = (π(x), e) which allows one to project forms of the principal fibre bundle onto M . In this projection, the
linear canonical form of a manifold (aka the fundamental form, aka the solder form) is given in Cartan notations [3] as
θ = θ iei, where ei are basis vectors of the tangent space and θ i are the canonical one-forms of the linear connection [2]. For
natural coordinates xi, the canonical form of linear connection is θ i = dxi and ei =

∂

∂xi
. Then, the second equation of (2) is

ui
= ẋi. Hence we can eliminate the tangent vector u and write the geodesics equations in the conventional form

ẍi + ωi
j(ẋ)ẋ

j
= 0. (3)

It is worth noting that the system (2) has transparent physicalmeaning. The first equation of (2) implies that a tangent vector
u is transported parallel along a geodesic curve. The second equation of the system (2) determines a displacement on the
manifold for a specific value of a tangent vector, or, in other words, solders the manifold with the tangent space.

First, we rewrite geodesic equations in terms of representations |φ⟩ of the Lorentz group SO+(1, n−1). For concreteness,
we consider the case n = 4. (Our results can be easily generalized to other dimensions and other orthogonal groups.) To
perform the task we have to reduce the linear connection of arbitrary frames to the linear connection of the orthonormal
frame rotations since only orthonormal frames support the action of the Lorentz group. Let ea be a section of orthogonal
frames so that ei = eaeai , where eai are n-ads (n is the space dimension), and ωa

b be the connection forms ωi
j reduced to the

orthonormal frames ea: ωa
b = eaj ω

j
ie

i
b + eai de

i
b, where eib is the inverse to n-ads. We describe the particle state using a rep-

resentation vector |φ⟩ assigned to the particle position so that |φ(τ)⟩, where τ is the curve parameter. (In the conventional
definition of geodesics |φ⟩ is the tangent vector u assigned to the particle position on the manifold.) Then, the first equation
of the system (2) has a straightforward generalization to a representation of the Lorentz group (in local co-ordinates)

∇ẋ |φ⟩ = d |φ⟩ /dτ + ω̂(ẋ) |φ⟩ = 0. (4)

Here |φ⟩ is a vector of the representation, ω̂ = (1/2)Ĝ[ab]ω
ab is the linear connection form in the representation, Ĝ[ab] are

the generators of the Lorentz group in the same representation [1]. Eq. (4) simply tells that any vector object associatedwith
a geodesic curve is transported parallel along it and we will consider it to be valid for representations of a local Yang–Mills
group as well.

The difficulty lies with the second equation of the geodesic system (2) (that calculates the direction and magnitude of
the displacement on a manifold for a specific value of the tangent vector and solders manifold with its tangent space). This
equation cannot be formulated in terms of representation vectors since one-to-one correspondence between representa-
tion vectors |φ⟩ and displacements on a manifold is absent in a general case. It has to be said that the second equation of
the geodesic system (2) is intuitively obvious to such degree that it is usually taken for granted. However, it is not nec-
essarily evident as it relates two entities of different geometrical nature: non-local motion along the curve x(τ ) and a local
tangent vector u. For this reason the second equation of (2) has to be amended in order to describe geodesics in terms of
representations of local group of symmetries.

3. Geodesics as integral curve of horizontal field in associated fibre bundle

To find a correct relation between displacements on a manifold and representation vectors we note that representation
operators are the only geometric objects at our disposal. A fundamental property of a (physical) operator is a set of its
eigenvectors lying in the representation space. Thus, an operator valued one-form (whichmaps a displacement to a space of
operators)would establish amapping of amanifold displacement to eigenvectors of a corresponding operator. Thismapping
is multivalued since different eigenvectors may correspond to the same displacement. However, being taken with Eq. (4),
this correspondence will lead to a unique curve in the fibre bundle associated with the representation and yield a geodesic
as a projection of this curve.
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