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a b s t r a c t

The total linear and angular momenta are the conserved quantities for the motions of
N-body problem. We are concerned with the geometry of the tangential (or normal) lines
for the orbit curves of the motions of N-particles. We investigate when such N-tangential
(or normal) lines meet at a point in the ambient space, where we consider 2-dimensional
Riemannian space formor de Sitter space as the ambient space.We have three applications.
The first one is to give the unified interpretation for the existence of the various centers of
the triangles, and the second is to obtain the spherical Desargues’ theorem. The third is to
answer the question when N-geodesics in Riemann surface meet at a point.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The N-body problem is

mjq̈j = −
∂U
∂qj

, (j = 1, 2, . . . ,N)

where qj = qj(t) = (xj(t), yj(t), zj(t)) ∈ R3 and U = −


i<j
mimj

|qi−qj|
is the potential energy. Denote by K(q̇) the total kinetic

energy 1
2

n
j=1 mj|q̇j|2. Consider the Lagrangian L(q, q̇) = K(q̇) − U(q). Then, the Euler–Lagrange equation for L

d
dt


∂L
∂ q̇j

(q(t), q̇(t))


=
∂L
∂qj

(q(t), q̇(t)), j = 1, 2, . . . ,N

is equivalent to the N-body problem. Thus, such q = (q1, q2, . . . , qN) is a critical point of the action A(q) =
 t1
t0

L(q, q̇)dt .
Therefore, the variational method seems to be useful for solving N-body problem.

In [1], Chenciner andMontgomery considered the three body problem for the 3-particles with equal masses in the plane.
In particular, they verified the existence of a figure-eight solution to the planer equal-masses three-body problem. They
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call this solution the figure-eight solution. However, the explicit solution to this problem has not been discovered yet. It is
also unknown even whether the solutions are algebraic or not. On the other hand, by paying attention to the fact that the
figure-eight solution has zero angularmomentum, Fujiwara, Fukuda andOzaki [2] found that three tangent lines at the three
bodies meet a point at each instant. In fact, this fact holds in more general situation. Consider the motions of three particles
with equal-masses 1 in the xy-plane. Denote by lk (resp. by nk) the tangential line (resp. normal line) of the curve of kth
particle at the point (xk(t), yk(t)) for any time t , where k = 1, 2, 3. Under these situations, Fujiwara et al. implemented a
systematic study and proved the following theorem.

Theorem A ([2,3]).
(1) If both the linear momentum and the angular momentum of 3-particles vanish, then either the three tangential lines l1, l2, l3

meet at a point or the three tangential lines are parallel to each other.
(2) If the moment of inertia is constant and the linear momentum of 3-particles vanish, then either the three normal lines

n1, n2, n3 meet at a point or the three normal lines are parallel to each other.

In particular, the case where all the orbit curves for the motions of the three particles completely coincide and the three
particles are on a closed plane curve is interesting. Such an example surely exists and the corresponding closed curve can be
described by the Jacobi elliptic functions with some modulus. In fact, in [2] it is proved that the figure-eight solution which
satisfies the assumption (1) of Theorem A exists on the lemniscate.

In this paper, we develop the geometry of linear and angular momenta of the motions of N-particles in various ambient
spaces, which generalizes the results of Fujiwara et al. stated above.

LetM be a Lagrangian submanifold of (R2N , ω =
N

i=1 dxi ∧ dyi). Let J be the almost complex structure on R2N , that is, J
satisfies the relations J( ∂

∂xi
) =

∂
∂yi

, J( ∂
∂yi

) = −
∂

∂xi
. Let θ and φ be 1-forms onM defined by

θ =

N
i=1

(xidyi − yidxi), φ =

N
i=1

(xidxi + yidyi),

respectively. Let L be a J-invariant 2-plane through the origin. For each point p on M , we define the dimensions dL(p) and
eL(p) as follows:

dL(p) = dim{v ∈ TpM | θp(v) = 0, v ⊥ L},
eL(p) = dim{v ∈ TpM | φp(v) = 0, v ⊥ L}.

We regard TpM as the affine space through p and denote it by H(p). We then have the following theorem.

Theorem 1.1. H(p) and L (resp. J(H(p)) and L) are contained in some (N+2)-dimensional linear subspace if and only if dL(p) =
N − 2 (resp. eL(p) = N − 2).

Choose L in Theorem 1.1 as L0 defined by

L0 =

(x1, y1, x2, y2, . . . , xN , yN) ∈ R2N

| x1 = x2 = · · · = xN , y1 = y2 = · · · = yN

.

We have an N-tangential or N-normal lines theorem as a corollary of Theorem 1.1.

Corollary 1.2. Consider the motions of N-particles in the xy-plane:

c1(t) = (x1(t), y1(t)), c2(t) = (x2(t), y2(t)), . . . , cN(t) = (xN(t), yN(t)).

Let M be a Lagrangian submanifold of R2N defined by M = c1 × c2 ×· · ·× cN . Let p = (c1(t1), c2(t2), . . . , cN(tN)) be any point
of M. Then, dL(p) = N − 2 (resp. eL(p) = N − 2) if and only if either the N-tangential lines (resp. N-normal lines) in the xy-plane
at p meet at a point in the xy-plane or all the N-tangential lines (resp. N-normal lines) in the xy-plane are parallel to each other.

This Corollary implies Theorem A of Fujiwara et al. because the linear momentum(denoted by −→m ), the angular momen-
tum(denoted by ω) and the moment of inertia(denoted by I) are respectively given by

−→m =


3

i=1

dxi
dt

,

3
i=1

dyi
dt


, ω =

3
i=1


xi
dyi
dt

− yi
dxi
dt


, I =

3
i=1

(x2i + y2i ).

We choose a v in Theorem 1.1 by the following v =
3

i=1
dxi
dt

∂
∂xi

+
3

i=1
dyi
dt

∂
∂yi

. We then easily see that v ⊥ L if and only if
−→m =

−→
0 , θ(v) = 0 if and only if ω = 0, and φ(v) = 0 if and only if dI(v) = 0. Therefore, Corollary 1.2 implies the results of

Fujiwara et al. The proof of Theorem 1.1 is given in the Section 2. In Sections 3 and 4, we give a generalization of Theorem 1.1
to the case where the ambient space is 2-dimensional non-flat Riemannian space form or de Sitter space.

Let R3N be a 3n-dimensional Euclidean space. We endow it the metric

gc =

N
j=1


(dxj)2 + (dyj)2 + c(dzj)2


,
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