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a b s t r a c t

This paper sets the scene for discrete variational problems on an abstract cellular complex
that serves as discrete model of Rp and for the discrete theory of partial differential
operators that are common in the Calculus of Variations. A central result is the construction
of a unique decomposition of certain partial difference operators into two components,
one that is a vector bundle morphism and other one that leads to boundary terms.
Application of this result to the differential of the discrete Lagrangian leads to unique
discrete Euler and momentum forms not depending either on the choice of reference
on the base lattice or on the choice of coordinates on the configuration manifold, and
satisfying the corresponding discrete first variation formula. This formula leads to discrete
Euler equations for critical points and to exact discrete conservation laws for infinitesimal
symmetries of the Lagrangian density, with a clear physical interpretation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Discrete models in geometry were always present in mathematics both for its intrinsic interest and for the insight they
let for more complicated related problems. This area is receiving an increasing interest in modern mathematics ([1–6] and
references therein).When combinedwithmodern computational tools, thesemodels open newperspectives for the analysis
of problems with physical or geometrical origin that involve ordinary or partial differential equations. An important part of
these equations have its origin in a variational principle, with or without constraints [7–15].

In the modern theory of numerical algorithms that model physical problems it is becoming clear [5–7,14–18] the need
of a formalization of the variational theory for a discrete Lagrangian. Within this theory one may explore the possibility
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to introduce discrete variational objects and its properties. This allows for a comparison with the corresponding objects
that are present in the classical smooth theory. Such a study is not new [17,19], but in the past decades has given rise
to new numerical integration procedures of mechanical systems with interesting geometrical and long-term properties
[5,7,14,16,18,20–23]. However, for several independent variables, that is, for PDEs of field theories, discrete variational
integrators have been studied only in recent years [12,13,16,24,25].

Historically, the first variational problem introduced by Johann Bernoulli (the determination of the brachistochrone
curve) was solved by him taking the curve as composed of several rectilinear elements [26]. That is, he studied the problem
through an associated discrete model. After a more rigorous formalization of the subject by Euler and later by Lagrange,
within the language of differential calculus, the doctrine evolved to its modern state. On the one hand, and thanks to
Weierstrass’ foundational work, it represents a fruitful branch of functional analysis. On the other hand, following the path
marked among others by Lie, Noether and Cartan, there is the possibility to develop a geometrical study of the equations
from a Lagrangian or Hamiltonian point of view, with a language that is independent of coordinates. The formalizing work
by Lagrange and later Weierstrass gave it a sound theoretical foundation, while Lie’s theory of continuous groups led to
different key results of ODEs and PDEs theory, for example Noether’s conservation laws. Application of Cartan’s calculus
brought geometrical character to the objects in the theory.

One of the keystones of the calculus of variations is first variation formula. We briefly sketch how it is obtained and
its consequences. Consider a function L(xν, yj, yjν) (the ‘‘Lagrangian’’) depending on p independent variables xν (where
ν ∈ {1, . . . , p}), on n dependent variables yj (where j ∈ {1, . . . , n}) and on p · n variables yjν . Consider the volume
form volX = dx1 ∧ · · · ∧ dxp. Consider a compact domain A ⊂ Rp with regular boundary ∂A. For any regular mapping
y : x = (xν) ∈ Rp

→ yj(x) ∈ Rn we may define the action functional LA(y) =

x∈A L(x

ν, yj(x), ∂yj(x)/∂xν)volX ∈ R. For
any 1-parameter family of mappings yt = (yjt(x)) (seen as a variation of a given mapping y0) and for the corresponding
infinitesimal variation δy =


(d/dt)t=0 y

j
t(x)


there holds

d
dt

LA(yt)

t=0

=

∫
x∈A


δyj · (∂L/∂yj)+ δyjν · (∂L/∂yjν)


(xν, yj(x), ∂yj(x)/∂xν)volX

this integrand contains the term δyjν = ∂(δyj)/∂xν , which involves the derivatives of the infinitesimal variation δy. With a
simple integration by parts we obtain first variation formula, where these derivatives disappear:

d
dt

LA(yt)

t=0

=

∫
x∈∂A


(∂L/∂yjν)(x

ν, yj(x), ∂yj(x)/∂xν)

· δyj(x)volνX

+

∫
x∈A


(∂L/∂yj)(xν, yj(x), ∂yj(x)/∂xν)−

d
dxν

(∂L/∂yjν)(x
ν, yj(x), ∂yj(x)/∂xν)


· δyj(x)volX

where volνX stands for the (p − 1)-form obtained by contraction of ∂/∂xν with the volume form volX . This is first variation
formula for the functional LA. The interested reader can find details and technicalities for a more geometrical presentation
of this formula in [8–11]. We may write then

d
dt

LA(yt)

t=0

=

∫
A
d

⟨ωy, δy⟩


+ ⟨E(y) · volX , δy⟩ =

∫
∂A

⟨ωy, δy⟩ +

∫
A
⟨E(y), δy⟩volX

where E(y) · volX is a p-form on X with values on span(dy(x)yj)j=1...n, called Euler form associated to the Lagrangian density
L · volX and to the mapping y and where ωy is a (p − 1)-form on X with values on span(dy(x)yj)j=1...n.

For each infinitesimal variation whose support is interior to A we have δy(x) = 0 on x ∈ ∂A, therefore d
dt LA(yt)


t=0 =

A⟨E(y), δy⟩volX . Following the main lemma of the calculus of variations, the vanishing of this integral for any such δy is
equivalent to Euler–Lagrange equations E(y) = 0 on the interior of A. These equations characterize mappings that are
critical for L among those with a fixed boundary.

Ifwehave a 1-parameter family of symmetriesϕt of the Lagrangian,wemay consider a 1-parameter family yt ofmappings
obtained applying ϕt to some given mapping and the corresponding infinitesimal variation δy. Then LA(yt) is constant. If
E(y0) = 0, we get 0 =


A d

⟨ωy0 , δy⟩


. This goes to the boundary due to Stokes’ Theorem and allows to recover conserved

quantities: 0 =

∂A⟨ωy0 , δy⟩. The ‘‘Noether current’’ ⟨ωy0 , δy⟩ vanishes when integrated on ∂A if y0 is critical. Hence first

variation formula leads straightforward to Euler equations and to Noether currents and conservation laws associated to
symmetries of the Lagrangian.

The boundary termωy is themomentum form. It determines a Legendre transformation and leads to the associated Cartan
form of the problem. In this way one may recover the whole Hamilton–Cartan theory, with the characterization of critical
mappings by means of the de Donder–Weyl equations, Poisson bracket for field theories, etc. (see [10,11]). It is known that
both Cartan and Euler forms can be constructed univocally as tensors from the Lagrangian density, and that this construction
is functorial when one considers the category of fibered smoothmanifolds and fibered isomorphisms: If one considers a local
isomorphismϕ : (x, y) → (x̄(x), ȳ(x, y)) and the natural action (ϕ·) of this isomorphism on the corresponding tensor spaces,
when one applies ϕ· to Cartan and Euler forms associated to LvolX one obtains precisely Cartan and Euler forms associated
to ϕ · (LvolX ).
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