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1. Introduction

The problem of existence and uniqueness of generating functions quadratic at infinity for Lagrangian submanifolds
has been studied in several papers. The first existence result has been proved by Sikorav in [1] (see also Brunella [2]) for
Lagrangian submanifolds obtained from Hamiltonian isotopies on T*M in the case of closed manifolds M. In the same setting,
the uniqueness has been proved by Viterbo in [3] (see also Théret [4]). These results are based on the method of broken
geodesics introduced by Chaperon [5].

The relevance of these arguments is in several frameworks such as symplectic geometry, Hamiltonian mechanics,
geometrical optics and control theory of static systems (see for example [6-9]). The determination of geometrical and
minmax solutions for the Hamilton-Jacobi equations is due to Chaperon [10] by using generating functions quadratic at
infinity (see also [11-13]). Moreover, they can be used also in the study Hamiltonian optics and thermostatic systems as
shown in [6], otherwise for the objective to determine invariants (like capacities) of Lagrangian submanifolds as in [3].

The focus of our work is generating functions quadratic at infinity of Lagrangian submanifolds related to Hamiltonian
flows on T*R". In order to formally state the problem, let us consider H € C?(T*R"; R), the Hamiltonian flow ¢ TR —
T*R" and its graph:

A= {(x, Py, §) e T'R" x T*R" | (x, p) = ¢}, (v, 5)}.
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We recall that S : [0, T] x R*" x R¥ —> R is a generating function for A, if
A= [Py &) e TR X TR | p=0.5; & = ~0,5: 0=10,5],

providing that 0 € R¥ is a regular value of the map (x, y, 8) —> 3S(x,y, 6).
Our main result is the existence and uniqueness of generating functions quadratic at infinity and weakly quadratic (in
the sense of Théret [4]) for the Lagrangian submanifolds A,. The Hamiltonians are of the following form:

1 1
H(x,p) = 5<Gp,p> + (a,p) + (b, x) + 5<Bx, X) +Ho(x,p), (x,p) € T"R", (1)

where G is symmetric and nondegenerate, B is symmetric and Hy € C?(T*R"; R) is vanishing as |x| —> 400 uniformly in
p belonging to bounded sets. Precisely, there exists some M > 0, 8 > 0, « > 8 + 1 such that

1+ Ipl”
1+ x|’
We can think to the previous Hamiltonians H asymptotically (in the x variable) like a second order polynomial. By the
Hamilton flow composition rule, we transfer the nonlinear part of the Hamiltonian dynamics from T*R" to T*S", via
suitable generalizations of the stereographic projection. This idea was implemented by Viterbo [3] in the case of compactly
supported symplectic diffeomorphisms and makes possible to apply the known results on existence and uniqueness of
generating functions in the closed manifold case. We also remark that the Hamiltonian vector field X; = JVH may not be
globally Lipschitz on T*R", a general setting not allowing the direct application of the broken geodesics method [5] or the
Amann-Conley-Zhender reduction [ 14].

Thanks to the main result, we can study a family of Lagrangian submanifolds L, := ¢},(Ly) C T*R" isotopic to the zero
section Ly, with generating function S : [0, T] x R" x R — R.

L= {(x.p) e T'R" | p = 3S; 0=2,5}.

Moreover, taking the Hamiltonians:

|ViHo(x, p)| <M V(x,p) € T'R", j=0,1,2. )

1
H@x p) = (Cp.p) + (@.p) + {b.x) + V(0.  (xp) € 'R, (3)

where V satisfy a slightly weak condition of (2), we exhibit a direct construction of a generating function quadratic at infinity
for A;. This turns out to be of the form

8(t.x,y,0) = (M(O)x, x) + (M(t)y, y) + (n(t), x) + (v(0),y) + (w(t.x,y),0) + (R()0, 0) + &(t.x,y,0) (4)

where & € Cl}. Moreover, many analytical features of § are essentially related to the asymptotic polynomial behaviour of
the Hamiltonian.

One important application of our results is to the Cauchy problem for a class of evolutive Hamilton-Jacobi equations on
T*R™. Shortly, given a Hamiltonian (3), we consider:

0;S(t,x) +H (x, V,S(t,x)) =0, (t,x) €[0,T]xR", 5
5(0,x) = o (%), x e R". (5)

We prove, with the use of the well known theory of minmax critical values, the existence and uniqueness of the minmax
solution:

S(t,x) = minmax S(t, x, -)

where S(t, x, -) is an arbitrary generating function quadratic at infinity for the Lagrangian submanifold L, = ¢} {(x,p) €
T*R" | p = Vyo (X), x € R"}. This extend a result of Bernardi and Cardin [13], proved in the case of a mechanical Hamiltonian
H= % p? + V(x) with V compactly supported.

Another application concern the case of Hamiltonians H(x, p) = %(G(x)p, p) where G is a semi-Riemannian metric
asymptotic to the Lorentz metric at infinity (in a suitable sense, the details are discussed in the Remark 6.3). In this
framework, our construction leads to a global World Function in a noncompact setting (see also [15]). We note that the
present work has a direct application to the Schrédinger equation on R", a link already shown in the paper [16] for compact
supported potentials.

The content of our paper is the following. Section 2 contains some preliminaries of symplectic geometry. In Section 3
we construct generating functions globally in time in the case of polynomials Hamiltonian. In Section 4, we exhibit
generalizations of stereographic projection. These mappings are used in Sections 5 and 6 which is the core of our paper,
to prove existence and uniqueness of the generating functions for the class of Hamiltonians satisfying conditions (1). In
Section 7 we focus the attention to the case of mechanical Hamiltonians (3) for which we exhibits the structure of a quadratic
generating function, while in Section 8 we focus our attention on the determination of global in time solutions for a class of
Hamilton-Jacobi equations on T*R".
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