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a b s t r a c t

Let u be a function of n independent variables x1, . . . , xn, and let U = (uij) be the Hessian
matrix of u. The symplectic Monge–Ampère equation is defined as a linear relation among
all possible minors of U . Particular examples include the equation detU = 1 governing
improper affine spheres and the so-called heavenly equation, u13u24 − u23u14 = 1,
describing self-dual Ricci-flat 4-manifolds. In this paper we classify integrable symplectic
Monge–Ampère equations in four dimensions (for n = 3 the integrability of such equations
is known to be equivalent to their linearisability). This problem can be reformulated
geometrically as the classification of ‘maximally singular’ hyperplane sections of the
Plücker embedding of the Lagrangian Grassmannian. We formulate a conjecture that any
integrable equation of the form F(uij) = 0 in more than three dimensions is necessarily of
the symplectic Monge–Ampère type.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let us consider a function u(x1, . . . , xn) of n independent variables and introduce the n× n Hessian matrix U = (uij) of
its second-order partial derivatives. The symplectic Monge–Ampère equation is a partial differential equation (PDE) of the
form

Mn +Mn−1 + · · · +M1 +M0 = 0, (1)

where Ml is a constant-coefficient linear combination of all l × l minors of the matrix U, 0 ≤ l ≤ n. Thus, Mn = detU =
Hess u,M0 is a constant, etc. Equivalently, these PDEs can be obtained by equating to zero a constant-coefficient n-form in the
2n variables xi, ui. Equations of this type belong to the class of completely exceptionalMonge–Ampère equations introduced
in [1]. Geometric and algebraic aspects of symplectic Monge–Ampère equations have been thoroughly investigated in
[2,3]. We point out that the left-hand side of (1), M(U), constitutes the general form of null Lagrangian densities, that is,
functionals of the form

∫
M(U)dxwhich generate trivial Euler–Lagrange equations [4]. The class of Eq. (1) is invariant under
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the natural contact action of the symplectic group Sp(2n), which is thus the equivalence group of our problem. All subsequent
classification results will be formulated modulo this Sp(2n)-equivalence.
When n = 2, one arrives at the standard Monge–Ampère equations,

ε(u11u22 − u212)+ αu11 + βu12 + γ u22 + δ = 0; (2)

these are known to be the only equations of the form F(u11, u12, u22) = 0 which are linearisable by a transformation from
the equivalence group Sp(4).
The case n = 3 is also understood completely: one can show that any non-degenerate symplectic Monge–Ampère

equation is either linearisable, or Sp(6)-equivalent to either of the canonical forms,

Hess u = 1, Hess u = u11 + u22 + u33, Hess u = u11 + u22 − u33; (3)

see [2,3,5]; we point out that all three canonical forms are Sp(6)-equivalent over C. The first equation arises in the theory
of improper affine spheres, while the second describes special Lagrangian 3-folds in C3 [6,7]. Here the non-degeneracy
is understood as follows. Let F(uij) = 0 be a symplectic Monge–Ampère equation. Consider the linearised equation,
∂F/∂uij vij = 0, obtained by setting u → u + εv and keeping terms of the order ε. The non-degeneracy means that the
corresponding symbol, ∂F/∂uij ξiξj, defines an irreducible quadratic form.
The problem of integrability of symplectic Monge–Ampère equations was addressed in [8] based on the method of

hydrodynamic reductions [9–11].Without going into technical details of thismethod (see theAppendix for a brief summary),
let us formulate the main result needed for our purposes.

Theorem 1 ([8]). A non-degenerate three-dimensional symplectic Monge–Ampère equation is integrable by the method of
hydrodynamic reductions if and only if it is linearisable.

In particular, the PDEs (3) are not integrable. Although this result is essentially negative, it will be crucial for the classification
of integrable equations in higher dimensions (where the situation is far more interesting). Before we proceed to the
description of the main results, let us clarify the geometry behind the symplectic Monge–Ampère equations (1) and the
linearisability/integrability conditions. Let us consider the Lagrangian Grassmannian Λ, which can be (locally) identified
with the space of n × n symmetric matrices U . The minors of U define the Plücker embedding of Λ into projective space
PN (we identify Λ with the image of its projective embedding). Thus, symplectic Monge–Ampère equations correspond to
hyperplane sections of Λ. For n = 3, we have Λ6 ⊂ P13, and linearisable equations correspond to hyperplanes which are
tangential to Λ6. Therefore, for n = 3, the linearisability condition coincides with the equation of the dual variety of Λ6,
which is known to be a hypersurface of degree 4 in (P13)∗ (we refer to [12–14] for a general theory behind this example). In
Section 2 we provide the following characterisation of linearisable equations in any dimension.

Theorem 2. For a non-degenerate symplectic Monge–Ampère equation (1) the following conditions are equivalent:

(1) The equation is linearisable by a transformation from Sp(2n).
(2) The equation is invariant under an n2-dimensional subalgebra of Sp(2n).
(3) The equation corresponds to a hyperplane which contains an osculating subspace On−2 of the Lagrangian Grassmannian of
the order n− 2.

For n = 3, the third condition reduces to the requirement of tangency.
In Section 3, we address the problem of integrability of symplectic Monge–Ampère equations in four dimensions, n = 4.

Among the best-known four-dimensional integrable examples one should primarily mention the ‘heavenly’ equation [15],

u13u24 − u23u14 = 1, (4)

which is descriptive of Ricci-flat self-dual 4-manifolds [16]. It was demonstrated in [10] that this equation is integrable by
the method of hydrodynamic reductions. Although, in principle, the method of hydrodynamic reductions can be applied in
any dimension, it leads to a quite complicated analysis. One way to bypass lengthy calculations is based on the following
simple idea. Suppose that our aim is the classification of four-dimensional integrable equations of the form (1) for a function
u(x1, x2, x3, x4). Let us look for travelling wave solutions in the form

u = u(x1 + αx4, x2 + βx4, x3 + γ x4),

or, more generally,

u = u(x1 + αx4, x2 + βx4, x3 + γ x4)+ Q (x, x),

where Q is an arbitrary quadratic form in the variables x1, x2, x3, x4. The substitution of this ansatz into (1) leads to a three-
dimensional symplectic Monge–Ampère equation which must be integrable for any values of constants α, β, γ , and an
arbitrary quadratic form Q . Since, in three dimensions, the integrability conditions are explicitly known (and are equivalent
to the linearisability), this provides strong restrictions on the original four-dimensional equation which are therefore
necessary for the integrability. In fact, in the present context they turn out to be sufficient: if all three-dimensional equations
obtained from a given four-dimensional PDE by travelling wave reductions are linearisable, then the PDE is integrable. The
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