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a b s t r a c t

Analmost Einsteinmanifold satisfies equationswhich are a slightweakening of the Einstein
equations; Einstein metrics, Poincaré–Einstein metrics, and compactifications of certain
Ricci-flat asymptotically locally Euclidean structures are special cases. The governing
equation is a conformally invariant overdetermined PDE on a function. Away from the
zeros of this function the almost Einstein structure is Einstein, while the zero set gives
a scale singularity set which may be viewed as a conformal infinity for the Einstein
metric. In this article there are two main results: we give a simple classification of the
possible scale singularity spaces of almost Einstein manifolds; we derive geometric results
which explicitly relate the intrinsic (conformal) geometry of the conformal infinity to the
conformal structure of the ambient almost Einstein manifold. The latter includes new
results for Poincaré–Einstein manifolds. Classes of examples are constructed. A compatible
generalisation of the constant scalar curvature condition is also developed. This includes
almost Einstein as a special case, and when its curvature is suitably negative, is closely
linked to the notion of an asymptotically hyperbolic structure.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A metric is said to be Einstein if its Ricci curvature is proportional to the metric [1]. Despite a long history of intense
interest in the Einstein equations many mysteries remain. In high dimensions it is not known if there are any obstructions
to the existence of an Einstein metric. There are 3-manifolds and 4-manifolds which do not admit Einstein metrics and
the situation is especially delicate in the latter case; see [2] for an overview of some recent progress. Here we consider a
specific weakening of the Einstein condition. By its nature this provides an alternative route to studying Einstein metrics
but, beyond this, there are several points which indicate that it may be a useful structure in its own right. On the one hand
the weakening is very slight, in a sense that will soon be clear. On the other hand, it allows in some interesting cases: at
least some manifolds satisfying these equations do not admit Einstein metrics, which suggests a role as a uniformisation
type condition; it includes in a natural way Poincaré–Einstein structures and conformally compact Ricci-flat asymptotically
locally Euclidean (ALE) spaces, and so Einstein metrics, Poincaré–Einstein structures and these ALE manifolds are special
cases of a uniform generalising structure.
Throughout the paper, we consider only metrics g of Riemannian signature (meaning that g is positive definite) and the

conformal structures these induce; all manifolds shall be assumed to be of dimension d ≥ 3. On a Riemannian manifold
(Md, g) the Schouten tensor P (or Pg ) is a trace adjustment of the Ricci tensor given by

Ricg = (d− 2)Pg + Jgg
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where Jg is the metric trace of Pg . Thus a metric is Einstein if and only if the trace-free part of Pg is zero. We will say that
(M, g, s) is a directed almost Einstein structure if s ∈ C∞(M) is a non-trivial solution to the equation

A(g, s) = 0 where A(g, s) := trace-free(∇g∇g s+ sPg). (1.1)

Here ∇g is the Levi-Civita connection for g , and the ‘‘trace-free’’ means the trace-free part with respect to taking a metric
trace. This is a generalisation of the Einstein condition; we will see shortly that, on the open set where s is non-vanishing,
go := s−2g is Einstein. On the other hand if g is Einstein then (1.1) holds with s = 1. Any attempt to understand the nature
and extent of this generalisation should include a description of the possible local structures of the scale singularity set,
that is the set Σ where s is zero (and where go = s−2g is undefined). The main results in this article are some answers
to this question and the development of a conformal theory to relate, quite directly, the intrinsic geometric structure of
the singularity space Σ to the ambient structure. The classification results for the scale singularity set are new, although
simple and elementary. On the other hand the approach to relating the (conformal) geometry of the conformal infinity to
the geometry of the ambient structure is more subtle and leads to a number of new results. If s solves (1.1) then so does
−s, and where s is non-vanishing these solutions determine the same Einstein metric. We shall say that a manifold (M, g)
is almost Einstein if it admits a covering such that on each open set U of the cover we have that (U, g, sU) is directed almost
Einstein and on overlaps U ∩ V we have either sU = sV or sU = −sV . Although there exist almost Einstein spaces which are
not directed [3], to simplify the expositionwe shall assume here that almost Einstein (AE)manifolds are directed. (So usually
we omit the term ‘‘directed’’.) In any case the results apply locally on almost Einstein manifolds which are not directed.
On an Einstein manifold (M, g) the Bianchi identity implies that the scalar curvature Scg (i.e. the metric trace of Ric) is

constant. Thus simply requiring a metric to be scalar constant is another weakening of the Einstein condition. On compact,
connected oriented smooth Riemannian manifolds this may be achieved conformally: this is the outcome of the solution to
the ‘‘Yamabe problem’’ due to Yamabe, Trudinger, Aubin and Schoen [4–7]. Just as almost Einstein generalises the Einstein
condition, there is a correspondingweakening of the constant scalar curvature condition as follows.Wewill say that (M, g, s)
is a directed almost scalar constant structure if s ∈ C∞(M) is a non-trivial solution to the equation S(g, s) = constant where

S(g, s) =
2
d
s(Jg −∆g)s− |ds|2g . (1.2)

Away from the zero set (which again we denote byΣ) of swe have S(g, s) = Scg
o
/d(d−1)where go := s−2g . In particular,

off Σ , S(g, s) is constant if and only if Scg
o
is constant. The normalisation is so that if go is the metric of a space form then

S(g, s) is exactly the sectional curvature. We shall say that a manifold (M, g) is almost Scalar constant (ASC) if it is equipped
with a covering such that on each open set U of the cover we have that (U, g, sU) is directed ASC, and on overlaps U ∩ V we
have either sU = sV or sU = −sV . In fact, in line with our assumptions above and unless otherwise mentioned explicitly, we
shall assume below that any ASC structure is directed.
As suggested above, closely related to these notions are certain classes of the so-called conformally compact manifolds

that have recently been of considerable interest. We recall how these manifolds are usually described. Let Md be a com-
pact smooth manifold with boundaryΣ = ∂M . A metric go on the interiorM+ ofM is said to be conformally compact if it
extends (with some specified regularity) to Σ by g = s2go where g is non-degenerate up to the boundary, and s is a non-
negative defining function for the boundary (i.e. Σ is the zero set for s, and ds is non-vanishing along Σ). In this situation
the metric go is complete and the restriction of g to TΣ in TM|Σ determines a conformal structure that is independent of
the choice of defining function s; thenΣ with this conformal structure is termed the conformal infinity ofM+. (This notion
had its origins in the work of Newman and Penrose; see the introduction of [8] for a brief review.) If the defining function
is chosen so that |ds|2g = 1 along M then the sectional curvatures tend to −1 at infinity and the structure is said to be
asymptotically hyperbolic (AH) (see [9] where there is a detailed treatment of the Hodge cohomology of these structures
and related spectral theory). The model is the Poincaré hyperbolic ball and thus the corresponding metrics are sometimes
called Poincaré metrics. Generalising the hyperbolic ball in another way, one may suppose that the interior conformally
compact metric go is Einstein with the normalisation Ric(go) = −ngo, where n = d − 1, and in this case the structure is
said to be Poincaré–Einstein (PE); in fact PE manifolds are necessarily asymptotically hyperbolic. Such structures have been
studied intensively recently in relation to the proposed AdS/CFT correspondence of Maldacena [10,11], related fundamental
geometric questions [12–20], and through connections to the ambient metric of Fefferman–Graham [21,22].
For simplicity of exposition we shall restrict our attention to smooth AE and ASC structures (Md, g, s); that is (M, g) is a

smooth Riemannianmanifold of dimension d ≥ 3 and s ∈ C∞(M) satisfies either (1.1) (the AE case) or (1.2) (for ASC). Let us
writeM± for the open subset ofM on which s is positive or, respectively, negative and, as above,Σ for the scale singularity
set. The first main results (proved in Section 2) are the following classifications for the possible submanifold structures
ofΣ .

Theorem 1.1. Let (Md, g, s) be a directed almost scalar constant structure with M connected. If S(g, s) > 0 then s is nowhere
vanishing and (M, go) has constant scalar curvature d(d − 1)S(g, s). If S(g, s) < 0 then s is non-vanishing on an open dense
set and Σ is either empty or else is a smooth hypersurface; On M \ Σ , Scg

o
is constant and equals d(d − 1)S(g, s). Suppose M

is closed (i.e. compact without boundary) with S(g, s) < 0 and Σ 6= ∅. A constant rescaling of s normalises S(g, s) to −1, and
then (M \M−) is a finite union of connected AH manifolds. Similar for (M \M+).
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