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1. Introduction

The evolution of phase-transition fronts has been the subject
of numerous investigations, due to its technological importance
and nontrivial nonlinear dynamics (see, e.g.,[1,2]). An efficient tool
for description of the front dynamics is the phase-field approach,
which is based on the consideration of the evolution of the order
parameter field governed by partial differential equations [3-5],
which are similar to reaction-diffusion equations describing the
propagation of a chemical reaction front [6,7].

If the physical process is characterized by some ‘“hidden”
internal variables, their slow relaxation can lead to a temporal non-
locality (memory) in the governing equations (see, e.g., [8-10]). In
the simplest case, the evolution of the order parameter u(x, t) is
governed by a partial integro-differential equation,

t
du = / a(t — o)[Au + f(w)](r)dr, (1)
—00
where zeros of function f (u) correspond to homogeneous phases in
the system. If the memory kernel a(t) is a non-singular function,
which decreases with 7 sufficiently fast, the analysis of the front
dynamics can be carried out by means of asymptotic methods, and
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a closed differential equation governing the front shape can be
derived [11-13].

Also, Eq. (1) describes reaction-diffusion phenomena in sys-
tems with memory. The latter kind of problems are often charac-
terized by a slowly decaying and singular memory kernels which
correspond to the phenomenon of subdiffusion [14,15]. A typical
model of that phenomenon includes a fractional order derivative
in time [16,17]:

u=Au+fu), O0O<a<l, (2)
where

[+2 _ 1 ‘ afu(xv t)

o u(x, t) = Td—a) /_OO o0 dr (3)

is the Caputo fractional derivative. Specifically, the subdiffusion
is significant in phase transitions when a glass phase is involved
[18,19].

In the present paper, we apply model (2) for studying the
dynamics of a slowly moving, weakly curved front between
two phases with equal thermodynamical potentials. Another
interpretation of the same mathematical model is the propagation
of the reaction front in a bistable subdiffusion-reaction system.
In Section 2, the formulation of problem is given. In Section 3,
we investigate the motion of a circular front, and an asymptotic
approach is used. In Section 4, we study the dynamics of a front of
an arbitrary shape. Section 5 contains some conclusions.
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2. Formulation of problem

We consider Eq. (2) in an infinite plane written in polar
coordinates,

1 1
3%u(r,0,t) = 0%u + —ou + ﬁagu +f (). (4)

It is convenient to use the representation,

r(_—la) /ooc[u(r, 6,6) —u(r,6,t —1)]

for the Caputo derivative, which is equivalent to the standard
definition (3). We assume that f(u) = —F'(u), where F(u) is
the potential which has two minima at u = u4 (a maximum of
F(u) takes place for an intermediate value of u). These minima of
the potential correspond to homogeneous states of the system. At
u=uy,f(uy) =0and f'(us) < 0. Later on, we assume that

F(uy) = Fu),
3

see Fig. 1. The typical examples are (i) f(u) = u — u°,
which corresponds to a subdiffusive Allen-Cahn equation [20,21];
(ii) f(u) = sign(u)(1 — |u|), which has been used for finding an
exact front solution in the one-dimensional case [20]. In the case
of a reaction-subdiffusion problem, f (u) is the reaction function.
Later on, we assume that u, > 0, u_ < 0, and define the “front”
between two phases,r = p(6, t), by therelationu(p (9, t), 0, t) =
0. We consider the case whereu < Qasr < p(f,t),andu > Oas
r > p(@, t), and apply the boundary condition

dr

o ur,0,t) = e

u(r - o0) = uy.

We assume that p(6, 0) = 0(¢~!) > 1, and the initial value of
u(r,6,t)isclosetou_ forr < p(@,t)and touy forr > p(6,¢t),
except a transition layer of the width O(1) (“domain wall”). Thus,
we consider a large “island” of the negative phase in an infinite
“ocean” of the positive phase, the opposite configuration can be
considered in a similar way.

It is well known that in the case of a one-dimensional front
between two phases with equal potentials, which occupy two
semi-planes, the solution tends to a stationary one, i.e., the front is
motionless [20]. As to a curved front in a plane, we expect that the
motion will be slow in the case of a small curvature, similarly to the
case of the normal diffusion [6]. That allows to apply asymptotic
methods for the simplification of the problem.

3. Axisymmetric solution

First, let us consider an axisymmetric solution, u = u(r,t).
In that case the front has a circular shape: r = p(t), where
u(p(t), t) = 0. Assume that the radius of the front is large,

p(t) = € 'R(t), wheree <« 1andR(t) = 0(1),
and introduce the time scaling,
(7)) =€t 7). (5)

The width of the transition zone between phases is O(1), thus the
radial variable appropriate for its description is

z=r1—p()=0().

Define

R(t) = R(e""*F) = R(D),

u(r, t) = u(z + e 'R, e—l/“E) =iz, D).
Later on, we drop the tildes. One can find that

1 € ze?

ro RO RO

) (6)

hence we can rewrite Eq. (4) as
€
92u u) = €3%u — — d,u + 0(e?).
u+ f(u) s R(t)z+()
Because the motion of the front is caused solely by its curvature,
the term
u(z, t)

F(‘]“) /000 [ue.0) = u(z+ o0 = pt = 0).1)] %

should balance the curvature term d,u/R(t); thus, both of them are
of the same order. That justifies the choice of the time scaling (5).

3.1. Governing equation for a circular front

Using the expansion

U=1uy+eu;+---, (7)
we obtain, at the leading order, the equation,
07t + f (o) = 0, 8)

which describes the structure of the transient zone (domain wall,
“kink”), up(z) = us(z). In the case f(up) = up — ug, the kink
solution of (8) is

uf(z) = tanh (%) ; (9)

in the case f (ug) = sign(ug)(1 — |ug|), we obtain
ur(z) = sign(z)(] — e"z‘).

At the first order in €, we search for a bounded solution of the
equation,

1
Bur +f (ur (@) uy = 0 up(2) — %azuf(z). (10)

Because the operator in the left-hand side of (10) is self-adjoint and
has a bounded homogeneous solution d,us(z), thus the solvability
condition is the orthogonality of the right-hand side of (10) to
o, ur(2), i.e.,

o0 -l o0

/ dzo,us(2)0 us (z) = —/ dz[alef(Z)]z. 11
oo R(®) J

The left-hand side of (11),

-1 o
) [oo dza,us(2)

x /:o%[uf(z)—uf(z—i-p(t)—p(t—r))] (12)

-1 *® dr
= F(_a)fo WG(p(t)—p(t—f)>,

where

1
6 = 5 (f(00) — uf(=00)) —/

oo

dyoyus Wus(y +5).  (13)

We discuss the convergence of the integral in (12) in Appendix A.
Returning to the original temporal scale, we obtain the governing
equation for the front shape p(t),

L 72 6(pw) - ot - )
N
1 o0
- [ _dz [y @] (14)
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