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a b s t r a c t

The dynamics of a curved front in a plane between two stable phases with equal potentials is modeled
via two-dimensional fractional in time partial differential equation. A closed equation governing a slow
motion of a small-curvature front is derived and applied for two typical examples of the potential function.
Approximate axisymmetric and non-axisymmetric solutions are obtained.
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1. Introduction

The evolution of phase-transition fronts has been the subject
of numerous investigations, due to its technological importance
and nontrivial nonlinear dynamics (see, e.g., [1,2]). An efficient tool
for description of the front dynamics is the phase-field approach,
which is based on the consideration of the evolution of the order
parameter field governed by partial differential equations [3–5],
which are similar to reaction–diffusion equations describing the
propagation of a chemical reaction front [6,7].

If the physical process is characterized by some ‘‘hidden’’
internal variables, their slow relaxation can lead to a temporal non-
locality (memory) in the governing equations (see, e.g., [8–10]). In
the simplest case, the evolution of the order parameter u(x, t) is
governed by a partial integro-differential equation,

∂tu =

 t

−∞

a(t − τ)[∆u + f (u)](τ )dτ , (1)

where zeros of function f (u) correspond to homogeneous phases in
the system. If the memory kernel a(τ ) is a non-singular function,
which decreases with τ sufficiently fast, the analysis of the front
dynamics can be carried out by means of asymptotic methods, and
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a closed differential equation governing the front shape can be
derived [11–13].

Also, Eq. (1) describes reaction–diffusion phenomena in sys-
tems with memory. The latter kind of problems are often charac-
terized by a slowly decaying and singular memory kernels which
correspond to the phenomenon of subdiffusion [14,15]. A typical
model of that phenomenon includes a fractional order derivative
in time [16,17]:

∂αt u = ∆u + f (u), 0 < α < 1, (2)

where

∂αt u(x, t) =
1

Γ (1 − α)

 t

−∞

∂τu(x, τ )
(t − τ)α

dτ (3)

is the Caputo fractional derivative. Specifically, the subdiffusion
is significant in phase transitions when a glass phase is involved
[18,19].

In the present paper, we apply model (2) for studying the
dynamics of a slowly moving, weakly curved front between
two phases with equal thermodynamical potentials. Another
interpretation of the same mathematical model is the propagation
of the reaction front in a bistable subdiffusion–reaction system.
In Section 2, the formulation of problem is given. In Section 3,
we investigate the motion of a circular front, and an asymptotic
approach is used. In Section 4, we study the dynamics of a front of
an arbitrary shape. Section 5 contains some conclusions.
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2. Formulation of problem

We consider Eq. (2) in an infinite plane written in polar
coordinates,

∂αt u(r, θ, t) = ∂2r u +
1
r
∂ru +

1
r2
∂2θ u + f (u). (4)

It is convenient to use the representation,

∂αt u(r, θ, t) =
−1

Γ (−α)


∞

0
[u(r, θ, t)− u(r, θ, t − τ)]

dτ
τ α+1

for the Caputo derivative, which is equivalent to the standard
definition (3). We assume that f (u) = −F ′(u), where F(u) is
the potential which has two minima at u = u± (a maximum of
F(u) takes place for an intermediate value of u). These minima of
the potential correspond to homogeneous states of the system. At
u = u±, f (u±) = 0 and f ′(u±) < 0. Later on, we assume that

F(u+) = F(u−),

see Fig. 1. The typical examples are (i) f (u) = u − u3,
which corresponds to a subdiffusive Allen–Cahn equation [20,21];
(ii) f (u) = sign(u)(1 − |u|), which has been used for finding an
exact front solution in the one-dimensional case [20]. In the case
of a reaction–subdiffusion problem, f (u) is the reaction function.
Later on, we assume that u+ > 0, u− < 0, and define the ‘‘front’’
between two phases, r = ρ(θ, t), by the relation u(ρ(θ, t), θ, t) =

0. We consider the case where u < 0 as r < ρ(θ, t), and u > 0 as
r > ρ(θ, t), and apply the boundary condition

u(r → ∞) = u+.

We assume that ρ(θ, 0) = O(ϵ−1) ≫ 1, and the initial value of
u(r, θ, t) is close to u− for r < ρ(θ, t) and to u+ for r > ρ(θ, t),
except a transition layer of the width O(1) (‘‘domain wall’’). Thus,
we consider a large ‘‘island’’ of the negative phase in an infinite
‘‘ocean’’ of the positive phase, the opposite configuration can be
considered in a similar way.

It is well known that in the case of a one-dimensional front
between two phases with equal potentials, which occupy two
semi-planes, the solution tends to a stationary one, i.e., the front is
motionless [20]. As to a curved front in a plane, we expect that the
motionwill be slow in the case of a small curvature, similarly to the
case of the normal diffusion [6]. That allows to apply asymptotic
methods for the simplification of the problem.

3. Axisymmetric solution

First, let us consider an axisymmetric solution, u = u(r, t).
In that case the front has a circular shape: r = ρ(t), where
u(ρ(t), t) = 0. Assume that the radius of the front is large,

ρ(t) = ϵ−1R(t), where ϵ ≪ 1 and R(t) = O(1),

and introduce the time scaling,

(t̃, τ̃ ) = ϵ1/α(t, τ ). (5)

The width of the transition zone between phases is O(1), thus the
radial variable appropriate for its description is

z = r − ρ(t) = O(1).

Define

R(t) = R(ϵ−1/α t̃) = R̃(t̃),

u(r, t) = u

z + ϵ−1R̃(t̃), ϵ−1/α t̃


= ũ(z, t̃).

Later on, we drop the tildes. One can find that

1
r

=
ϵ

R(t)
−

zϵ2

R2(t)
+ · · · , (6)

hence we can rewrite Eq. (4) as

∂2z u + f (u) = ϵ∂αt u −
ϵ

R(t)
∂zu + O(ϵ2).

Because the motion of the front is caused solely by its curvature,
the term

∂αt u(z, t)

=
−1

Γ (−α)


∞

0


u(z, t)− u


z + ρ(t)− ρ(t − τ), t

 dτ
τ α+1

,

should balance the curvature term ∂zu/R(t); thus, both of them are
of the same order. That justifies the choice of the time scaling (5).

3.1. Governing equation for a circular front

Using the expansion

u = u0 + ϵu1 + · · · , (7)

we obtain, at the leading order, the equation,

∂2z u0 + f (u0) = 0, (8)

which describes the structure of the transient zone (domain wall,
‘‘kink’’), u0(z) = uf (z). In the case f (u0) = u0 − u3

0, the kink
solution of (8) is

uf (z) = tanh


z
√
2


; (9)

in the case f (u0) = sign(u0)(1 − |u0|), we obtain

uf (z) = sign(z)

1 − e−|z|


.

At the first order in ϵ, we search for a bounded solution of the
equation,

∂2z u1 + f ′

uf (z)


u1 = ∂αt uf (z)−

1
R(t)

∂zuf (z). (10)

Because the operator in the left-hand side of (10) is self-adjoint and
has a bounded homogeneous solution ∂zuf (z), thus the solvability
condition is the orthogonality of the right-hand side of (10) to
∂zuf (z), i.e.,

∞

−∞

dz∂zuf (z)∂αt uf (z) =
1

R(t)


∞

−∞

dz[∂zuf (z)]2. (11)

The left-hand side of (11),

−1
Γ (−α)


∞

−∞

dz∂zuf (z)

×


∞

0

dτ
τ α+1


uf (z)− uf


z + ρ(t)− ρ(t − τ)


(12)

=
−1

Γ (−α)


∞

0

dτ
τ α+1

G

ρ(t)− ρ(t − τ)


,

where

G(s) =
1
2


u2
f (∞)− u2

f (−∞)


−


∞

−∞

dy∂yuf (y)uf (y + s). (13)

We discuss the convergence of the integral in (12) in Appendix A.
Returning to the original temporal scale, we obtain the governing
equation for the front shape ρ(t),

−1
Γ (−α)


∞

0

dτ
τ α+1

G

ρ(t)− ρ(t − τ)


=

1
ρ(t)


∞

−∞

dz

∂zuf (z)

2
. (14)
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