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h i g h l i g h t s

• A trajectory-free method to test for multiscale dynamics.
• Isolates the fast dynamics and determines the reduced slow dynamics.
• Based on the spectral properties of the transfer and Koopman operators.

a r t i c l e i n f o

Article history:
Received 18 February 2015
Received in revised form
18 December 2015
Accepted 10 April 2016
Available online 19 April 2016
Communicated by I. Melbourne

Keywords:
Multiscale dynamics
Transfer operator
Koopman operator
Model reduction

a b s t r a c t

We develop algorithms built around properties of the transfer operator and Koopman operator which
(1) test for possible multiscale dynamics in a given dynamical system, (2) estimate the magnitude of the
time-scale separation, and finally (3) distill the reduced slow dynamics on a suitably designed subspace.
By avoiding trajectory integration, the developed techniques are highly computationally efficient. We
corroborate our findings with numerical simulations of a test problem.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Effective numerical simulation of multiscale systems consti-
tutes a formidable challenge. Consider a system which has slow
dynamics on a time-scale of order one and fast dynamics on the
scale of order 1/ϵ for some parameter ϵ ≪ 1. To accurately simu-
late orbits numerically and to assure numerical stability, the time
step of the integrator must be of the order of ϵ. To capture the rele-
vant slowdynamics a total number of integration steps of the order
of 1/ϵ is required, making direct numerical simulations of orbits
computationally impractical.

Numerical integrators are subject to two main sources of error.
The first is truncation error, which is the inability of the numerical
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method (Runge–Kutta, Euler–Maruyama, etc.) to fully capture the
actual dynamics of the system. The second is round-off error,
due to implementing the numerical method on a computer with
finite precision arithmetic. While truncation error decreases with
a smaller time step, round-off error increases [1,2]. In a multiscale
system, if the time-scale separation is large, it may be impossible
to find a time step which is simultaneously small enough to avoid
significant truncation error for the fast dynamics and sufficiently
large to avoid detrimental accumulation of round-off error for the
slow dynamics.

Even if orbits could be computed exactly, analysing amultiscale
system using a time series extracted from a true orbit can still yield
incorrect data about the diffusion process of the slow variables [3].
To avoid this problem, the time series must be sampled at a rate
intermediate between the slow and fast variables and these rates
might not be known in advance.

There exists a variety of numerical methods dealing with
one or more aspects of these numerical difficulties (see [4] and
references therein). These methods rely on producing trajectories
of the dynamical system via some form of time-integration with
some of the issues mentioned above remaining. In this paper, we
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develop algorithms which avoid trajectory integration altogether.
Besides the advantages relating to the issues of time-integration
mentioned above, the algorithm allows for a huge reduction in
computational time. Our main objective is to develop numerical
algorithms which, given a dynamical system,

1. test whether the system exhibitsmultiscale behaviour, and if so
2. determine the order of the time-scale separation, and then
3. construct effective reduced equations for the slow dynamics

allowing for the application of large time steps.

The framework we adopt for this integration-free approach is
based on the infinitesimal generator associated to the underlying
continuous-time dynamical system.

The construction of effective reduced equations (point 3 above),
requires the estimation of coordinates in which the fast and slow
dynamics operate. In the situation where there is an attracting
slow manifold, existing numerical methods to determine the slow
manifold include [5–9] (see [10] for a recent review). Most of these
methods rely on the existence of some attracting slow manifold
towards which transient fast dynamics is approaching along fast
fibres. Here we consider the situation of multiscale systems whose
asymptotic behaviour does not necessarily occur on an attracting
slow manifold. In contrast to methods which determine the fast
fibres locally, we instead globally estimate the nonlinear foliation
of fast fibres.

Once slow and fast coordinates are established, it is a further
challenge to identify their dynamics. There are two approaches;
either to devise an effective numericalmethodwhich allows for the
reliable simulation of the slow coordinates or to construct closed
equations for the slow coordinates. The first avenue has been
successfully pursued by numerical methods such as the equation-
free method [8] and the heterogeneous multiscale method [11,12]
which employ short finely resolved bursts of the full dynamics to
numerically estimate the averaged slow vector field which then
subsequently may be propagated with a large time step. Here
we tackle the second avenue of determining the slow dynamics
explicitly without the need for temporally resolving the fast
dynamics at each step. To compute reduced equations on the
(in general, non-unique) slow coordinates, we nonlinearly project
local computations along the fast fibres. Our approach does not rely
on any temporal integration to estimate the reduced equations.
Hence it does not suffer frompossible sensitivity of these estimates
to the choice of the length of the fast bursts. For example, in the
case where the fast dynamics itself involves transitions between
metastable states, a short temporal sampling of the full dynamics
might not be sufficient to capture the fast invariant measure. This
would then bias the averaged slow vector field.

In Section 2 we briefly review the notion of generators of
transfer and Koopman operators. Section 3 introduces a trajectory-
free test for multiscale behaviour. The degree of time-scale
separation is estimated in algorithms described in Sections 4 and
5. A method to determine the reduced slow dynamics from a
multiscale systemwithout relying on statistics obtained from long
time-integrations is given in Section 6. The algorithms are tested in
numerical simulations in Section 7. We conclude with a discussion
in Section 8.

2. Generators

We describe our methodology for Itō drift–diffusion processes,
as these are a large and flexible class of dynamical systems, and
the spectral properties of the corresponding transfer operators are
relatively straightforward. Consider a drift–diffusion process

dζi = µi dt +

ℓ
k=1

σik dWk with i = 1, . . . , d (1)

defined on a subset Z of Rd where l ≤ d and each Wk for
k = 1, . . . , ℓ represents an independent Wiener process. Given
a probability density function at time t = 0, the density at future
times is determined by the Fokker–Planck equation

∂ρ

∂t
= Lρ

where

Lρ = −

N
i=1

∂

∂zi


µi ρ


+

1
2

N
i,j=1

∂2

∂zi ∂zj


Dij ρ


. (2)

The secondorder differential operatorL is called the Fokker–Planck
operator. At each point z in the phase spaceZ, the vectorµ(z) ∈ Rd

represents the drift of the process and the positive semi-definite
matrix D(z) = σ(z)σ (z)⊤ ∈ Rd×d the diffusion. The operator L
generates a family of operators etL for t ≥ 0 such that esLetL =

e(s+t)L and limt→0
1
t [e

tL
− Id] = L. If ρ ∈ L1(Z) is an initial prob-

ability density, then etL(ρ) is the density after time t . Thus, etL
may be thought of as a transfer operator defined on L1(Z). Since
the underlying system is a random dynamical system and etL rep-
resents an average over all possible randompaths, it is an annealed
transfer operator [13].

We now consider a setting where the Fokker–Planck operator
has compact resolvent. Suppose the domain Z is a compact sub-
set of Rd with piecewise smooth boundary. We also allow peri-
odic boundary conditions, such as systems defined on the torus
Td

= Rd/Zd, so long as the fundamental domain is compact with
smooth boundary. Under such assumptions, the Lebesguemeasure
of Z is finite, and with respect to this measure, the Hilbert space
L2(Z) is a subset of L1(Z). Further assume that the operator is uni-
formly elliptic, which holds if the matrix D(z) is positive definite
for every z ∈ Z. Results in the theory of partial differential equa-
tions then imply that the Fokker–Planck operator defined on L2(Z)
has compact resolvent. See [14, Chapter 7] for further details and
proofs. The condition of uniform ellipticity can in some cases be re-
placed with the weaker condition of hypo-ellipticity; see [14–16].

Assuming the resolvent is compact, the spectrum of the
operator then consists of a countable set of eigenvalues {λk}

∞

k=0
which, when ordered by the convention

0 = Re λ0 ≥ Re λ1 ≥ Re λ2 ≥ · · · , (3)

satisfy limk→∞ Re λk → −∞. As a consequence, for each t > 0 the
operator etL is compact with eigenvalues etλk tending to zero as
k → ∞. The invariant density ρ0 of the system is an eigenfunction
of L associated to the eigenvalue λ0 = 0.

The Kolmogorov backward equation is given by ∂ f
∂t = L∗f

where the adjoint of the Fokker–Planck operator is given by

L∗f =

N
i=1

µi
∂ f
∂zi

+
1
2

N
i,j=1

Dij
∂2f
∂zi ∂zj

. (4)

This adjoint operator generates a family of operators Kt := etL
∗

=

(etL)∗ for t ≥ 0. If f ∈ L2(Z), then Kt(f ) ∈ L2(Z) is given
by Kt(f )(z) = Ef (ζ (t)) where the expectation is over all paths
ζ (t) in the drift–diffusion process which satisfy ζ (0) = z. The
operator Kt may therefore be regarded as an annealed Koopman
or composition operator.

The operators L∗ and L share the same eigenvalues λk.
Consider the eigenfunctionψk ∈ L2(Z) of L∗ associated to λk. This
function ψk is an observable which evolves according to

Ktψk = etλkψk

and therefore decays to zero at the rate given by |etλk | for t > 0. In
general, the eigenfunctions of L∗ associated to eigenvalues with
real part closest to zero are the observables of the system which
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