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h i g h l i g h t s

• First Luria–Delbrück model that takes into account cellular replication limits.
• Model the emergence of mutants that escape replicative senescence.
• Results on the mean, variance, distribution, and asymptotic behavior of the mutant population.
• Discuss applications, including telomere crisis and fluctuation analysis.
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a b s t r a c t

Originally developed to elucidate the mechanisms of natural selection in bacteria, the Luria–Delbrück
model assumed that cells are intrinsically capable of dividing an unlimited number of times. This as-
sumption however, is not true for human somatic cells which undergo replicative senescence. Replicative
senescence is thought to act as a mechanism to protect against cancer and the escape from it is a rate-
limiting step in cancer progression. Here we introduce a Luria–Delbrück model that explicitly takes into
account cellular replication limits in the wild type cell population and models the emergence of mutants
that escape replicative senescence. We present results on the mean, variance, distribution, and asymp-
totic behavior of the mutant population in terms of three classical formulations of the problem. More
broadly the paper introduces the concept of incorporating replicative limits as part of the Luria–Delbrück
mutational framework. Guidelines to extend the theory to include other types of mutations and possible
applications to the modeling of telomere crisis and fluctuation analysis are also discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Luria–Delbrück experiment investigated whether muta-
tions in bacteria arise spontaneously or as an adaptive response [1].
The answer led to a rich mathematical theory, with important ap-
plications in the calculation of mutation rates [2], the emergence
of antibiotic-resistant microbes [3], the study of drug therapy-
resistant cancer cells [4,5] and cancer genetics [6,7]. Theoreti-
cal advances include the analysis of the probability distributions
[8,9], asymptotic properties [10], numerical methods for fluctua-
tion analysis [11], and the accuracy of estimates for the mutation
rates [12]. Extensions of the theory include different cell cycle dis-
tributions and growth laws of wild type cells [13,14]. For a review
and more recent advances see [15,16].
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Currently an underlying assumption of the theory is that cells
are capable of an unlimited number of divisions. This assumption
is appropriate to model mutations in bacteria, it does not apply
however, to the majority of cells in the human body. Normal
human somatic cells are capable of a limited number of divisions,
a phenomenon known as replicative senescence or Hayflick’s
limit [17]. Hence, when we consider the somatic evolution of
human cells, it is fundamental to understand how replicative
limits affect the emergence, dynamics, and distribution of mutant
populations. Here, we present the first attempt to address
explicitly the role of replicative limits in the Luria–Delbrück
mutational framework.

Replicative senescence is linked to the shortening of telomeres
during cell division, which are repetitive sequences of DNA found
at the end of linear chromosomes [18]. Replication limits protect
against cancer by limiting the size of a clonal cell population
and by reducing the possible number of cells divisions, when
mutations typically occur. Cells can escape replicative senescence
by expressing telomerase, an enzyme that extends telomere
length [19].
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Table 1
Summary of the different formulations discussed in the paper.

Luria–Delbrük Lea–Coulson Bartlett

Growth of wild type cells Deterministic Deterministic Stochastic
Mutations Random Random Random
Growth of mutants Deterministic Stochastic Stochastic
Notes Only knowledge of the average behavior

of mutant clones is needed.
Captures additional stochasticity in the
mutant population. Requires knowledge
of the p.g.f. of mutant clones.

Fully stochastic version. Potentially the most
realistic. Not a filtered Poisson process.
Hardest to analyze.

Essentially all human cancers acquire mechanisms to maintain
telomere length, most often through high levels of telomerase
expression (90%) [19], and less frequently through the alternative
telomere lengthening pathway (ALT) (10%) [20]. The stage of
tumor development at which cells start expressing telomerase is
probably cancer-type-specific. Proliferation in telomerase negative
cells after the inactivation of cell-cycle checkpoint pathways can
lead to crisis, a phase characterized by widespread cell death
and genome instability. Cells can emerge from crisis immortalized
through telomerase activation [18]. This sequence of events might
play an important role in breast cancer [21]. In other cancer types
telomerase expression might occur at earlier stages [18]. If cancer
originates in a telomerase positive stem cell, full progression
towards malignancy might involve instead the up-regulation of
telomerase activity. The finding in tumors of cells with stem
cell characteristics has led to the concept of cancer stem cells
(CSC). There is debate over the cell of origin of CSCs, whether
they originate from normal stem cells or from differentiated cell
types, which acquired stem cell characteristics. In multiple types
of cancer there is evidence that the initiating mutations originate
in cellswith limited proliferative potential, such as progenitors (for
a review see [22]).

Here, we consider mutations that allow cells to bypass replica-
tive limits, and develop the framework in terms of three formula-
tionswith different levels of randomness (Table 1). Themanuscript
is organized as follows. First, we consider the Luria–Delbrück for-
mulation, which assumes that mutant and wild type cells grow
deterministically. This formulation is useful when only the aver-
age behavior of mutant clones is known, as occurs in two of the
applications considered in the Discussion section. In the article
we focus on the case where mutant cells grow exponentially and
derive results for the mean, variance, and asymptotic behavior.
In this context (exponential mutant growth), the results for the
Luria–Delbrück formulation are then used to derive statistics for
the Lea–Coulson model, which assumes that wild type cells grow
deterministically and the mutant population grows stochastically.
In principle the Lea–Coulson formulation is preferable, because it
captures additional stochasticity in the mutant population; how-
ever, the probability generating function of the mutant clones is
often not known. Despite this limitation, the applications for the
Lea–Coulson formulation go beyond the single mutant with expo-
nential growth case. In particular, we discuss a possible application
to telomere crisis. Next, we discuss Bartlett’s formulation, which
assumes stochasticity at every layer of the process. In this section,
we derive the stochasticmaster equation for the entire cell popula-
tion, which should form the basis for future research into the fully
stochastic version of the problem. We also investigate the proba-
bility of escaping replicative limits. Understanding this quantity is
crucial to evaluate the effectiveness of replicative senescence as a
tumor suppressor pathway. Throughout the paper we emphasize
the comparison between the different statistics when replication
limits are includedwith those from the classicalmodel, where they
are not. We end by discussing applications of fluctuation analysis
to estimate the rate of telomerase activation.

2. Cellular replication limits

To model replicative limits we assume that each cell has a
replication capacity ρ ≥ 0. When a cell with replication capacity
ρ > 0 divides, it produces two daughter cells with replication
capacities ρ − 1. Cells with replication capacity ρ = 0 become
senescent and stop dividing (Fig. 1(A)).

Let the rates of cell division and death be adiv and adie. If we
denote the normalized division rate by q = adiv/(adie + adiv), then
adiv = q(adie + adiv) and adie = (1 − q)(adie + adiv). Notice that
in general 0 ≤ q ≤ 1 and if the cell population initially grows
q > 0.5. We can then express the model in terms of dimensionless
units of time by making adie + adiv = 1. If xρ(t) is the number of
cells with replication capacity ρ at time t and k is the maximum
replication capacity, then the time evolution of the cell population
is described by the system:

ẋk = −xk
ẋk−1 = 2q xk − xk−1
ẋk−2 = 2q xk−1 − xk−2
...

ẋ0 = 2q x1 − (1 − q) x0.

(1)

We refer to propositions in the Supplementary material (see
Appendix A) with the letter ‘‘S’’ followed by a roman numeral. If
Xtot(t; q) =

k
ρ=0 xρ(t) and there is a single cell with replication

capacity k at t = 0, from S1 we have:

Xtot(t; q) = e−t
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Fig. 1(B), plots the trajectory of Xtot(t; q) for different values of
k. If 0.5 < q < 1, the cell population first grows on account of the
positive net growth rate (adiv > adie). However, as time progresses
more cells hit Hayflick’s limit and stop dividing. When this occurs
the cell population starts to decrease as most cells become senes-
cent and eventually die. For an analysis of the stochastic version of
(1) see [23].

Here we focus on mutations that activate telomerase. Telom-
erase allows cells to bypass replicative limits, but it does not
reverse senescence [24]. For this reason a telomerase-activating
mutation that originates in a senescent cell is a dead end. Thus,
from here on we focus our attention on the dividing (non-
senescent) fraction of the cell population X(t; q) =


j>0 xj(t).

In terms of the incomplete upper gamma function Γ (k, t) =
∞

t sk−1e−sds, we find:

X(t; q) = e(2q−1)t Γ (k, 2qt)/Γ (k). (3)

Eq. (3) can be modified to include different initial conditions.
If k is the maximum replication capacity found in the population
at time t = 0, then the total number of dividing cells equals
e(2q−1)t k

j=1 xj(0)Γ (j, 2qt)/Γ (j). From here on we focus on pop-
ulations arising from a single founding cell (Eq. (3)). Results for
different initial conditions can be derived from the fact that the
processes arising from each of the subpopulations xj(0) are inde-
pendent of each other.
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