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h i g h l i g h t s

• Noise is introduced to a class of difference equations under prediction-based control.
• The class of equations includes common models of population dynamics.
• Noise in the control parameter improves our ability to stabilise positive equilibria.
• Systemic noise has a ‘‘blurring’’ effect on positive equilibria.
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a b s t r a c t

We consider the influence of stochastic perturbations on stability of a unique positive equilibrium of a
difference equation subject to prediction-based control. These perturbations may be multiplicative

xn+1 = f (xn) − (α + lξn+1) (f (xn) − xn), n = 0, 1, . . . ,

if they arise from stochastic variation of the control parameter, or additive

xn+1 = f (xn) − α(f (xn) − xn) + lξn+1, n = 0, 1, . . . ,

if they reflect the presence of systemic noise.
We begin by relaxing the control parameter in the deterministic equation, and deriving a range of

values for the parameter over which all solutions eventually enter an invariant interval. Then, by allowing
the variation to be stochastic, we derive sufficient conditions (less restrictive than known ones for the
unperturbed equation) under which the positive equilibrium will be globally a.s. asymptotically stable:
i.e. the presence of noise improves the known effectiveness of prediction-based control. Finally, we show
that systemic noise has a ‘‘blurring’’ effect on the positive equilibrium,which can bemade arbitrarily small
by controlling the noise intensity. Numerical examples illustrate our results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of discrete maps can be complicated, and various
methodsmay be introduced to control their asymptotic behaviour.
In addition, both the intrinsic dynamics and the control may
involve stochasticity.

∗ Corresponding author.
E-mail addresses:maelena@math.ucalgary.ca (E. Braverman),

conall.kelly@uwimona.edu.jm (C. Kelly), alexandra.rodkina@uwimona.edu.jm
(A. Rodkina).

Wemay ask the following of stochastically perturbed difference
equations:

(1) If the original (non-stochastic) map has chaotic or unknown
dynamics, can we stabilise the equation by introducing a
control with a stochastic component?

(2) If the non-stochastic equation is either stable or has known dy-
namics (for example, a stable two-cycle [1]), do those dynamics
persist when a stochastic perturbation is introduced?

In this article, we consider both these questions in the context of
prediction-based control (PBC, or predictive control). Ushio and
Yamamoto [2] introduced PBC as a method of stabilising unstable
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periodic orbits of

xn+1 = f (xn), x0 > 0, n ∈ N0, (1)

where N0 = {0, 1, 2, . . . , }. The method overcomes some of the
limitations of delayed feedback control (introducedby Pyragas [3]),
and does not require the a priori approximation of periodic orbits,
as does the OGY method developed by Ott et al. [4].

The general form of PBC is

xn+1 = f (xn) − α(f k(xn) − xn), x0 > 0, n ∈ N0,

where α ∈ (0, 1) and f k is the kth iteration of f . If k = 1, PBC
becomes

xn+1 = f (xn) − α(f (xn) − xn) = (1 − α)f (xn) + αxn,
x0 > 0, n ∈ N0. (2)

Recently, it has been shown how PBC can be used to manage
population size via population reduction by ensuring that the
positive equilibriumof a class of one-dimensionalmaps commonly
used to model population dynamics is globally asymptotically
stable after the application of the control [5]. Similar effects are also
possible if it is not feasible to apply the control at every timestep.
This variation on the technique is referred to as PBC-based pulse
stabilisation [6,7].

Here, we investigate the influence of stochastic perturbations
on the ability of PBC to induce global asymptotic stability of a
positive point equilibrium of a class of equations of the form (1).
It is reasonable to introduce noise in one of two ways. First, the
implementation of PBC relies upon a controlling agent to change
the state of the system in a way characterised by the value of the
control parameter α. In reality we expect that such precise control
is impossible, and the actual change will be characterised by a
control sequence {αn}n∈N0 with terms that vary randomly around
α with some distribution. This will lead to a state-dependent, or
multiplicative, stochastic perturbation. Second, the system itself
may be subject to extrinsic noise, which may be modelled by a
state-independent, or additive, perturbation.

The fact that stochastic perturbation can stabilise an unstable
equilibrium has been understood since the 1950s: consider the
well-known example of the pendulumof Kapica [8].More recently,
a general theory of stochastic stabilisation and destabilisation of
ordinary differential equations has developed from [9]: a compre-
hensive review of the literature is presented in [10]. This theory
extends to functional differential equations: for example [11,12]
and references therein.

Stochastic stabilisation and destabilisation is also possible for
difference equations; see for example [13,14]. However, the qual-
itative behaviour of stochastic difference equations may be dra-
matically different from that seen in the continuous-time case, and
must be investigated separately. For example, in [15], solutions of a
nonlinear stochastic difference equation with multiplicative noise
arising from an Euler discretisation of an Itô-type SDE are shown to
demonstrate monotonic convergence to a point equilibrium with
high probability. This behaviour is not possible in the continuous-
time limit.

Now, consider the structure of the map f . We impose the
Lipschitz-type assumption on the function f around the unique
positive equilibrium K .

Assumption 1.1. f : [0, ∞) → [0, ∞) is a continuous function,
f (x) > 0 for x > 0, f (x) > x for x ∈ (0, K), f (x) < x for x > K ,
and there exists M ≥ 1 such that

|f (x) − K | ≤ M|x − K |. (3)

Note that under Assumption 1.1 function f has only a single
positive point equilibrium K . We will also suppose that f is
decreasing on an interval that includes K :

Assumption 1.2. There is a point c < K such that f (x) ismonotone
decreasing on [c, ∞).

It is quite common for Assumptions 1.1 and 1.2 to hold for
models of population dynamics, and in particular for models
characterised by a unimodal map: we illustrate this with Exam-
ples 1.3–1.5. It follows from Singer [16] that, when additionally
f has a negative Schwarzian derivative (Sf )(x) = f ′′′(x)/f ′(x) −
3
2 (f

′′(x)/f ′(x))2 < 0, the equilibrium K is globally asymptotically
stable if and only if it is locally asymptotically stable. In each case,
as the system parameter grows, a stable cycle replaces a stable
equilibrium which loses its stability, there are period-doubling bi-
furcations and eventually chaotic behaviour.

Example 1.3. For the Ricker model

xn+1 = xner(1−xn), x0 > 0, n ∈ N0, (4)

Assumptions 1.1 and 1.2 both hold with K = 1, and the global
maximum is attained at c = 1/r < K = 1 for r > 1.
Let us note that for r ≤ 1 the positive equilibrium is globally
asymptotically stable and the convergence of solutions to K is
monotone. However, for r > 2 the equilibrium becomes unstable.

Example 1.4. The truncated logistic model

xn+1 = max {rxn(1 − xn), 0} , x0 > 0, n ∈ N0, (5)

with r > 1 and c =
1
2 < K = 1 − 1/r , also satisfies

Assumptions 1.1 and 1.2. Again, for r ≤ 2, the equilibrium K is
globally asymptotically stable, with monotone convergence to K ,
while for r > 3 the equilibrium K is unstable.

Example 1.5. For themodifications of the Beverton–Holt equation

xn+1 =
Axn

1 + Bxγ
n
, A > 1, B > 0, γ > 1, x0 > 0, n ∈ N0, (6)

and

xn+1 =
Axn

(1 + Bxn)γ
, A > 1, B > 0, γ > 1, x0 > 0, n ∈ N0, (7)

Assumption 1.1 holds. Also, (6) and (7) satisfy Assumption 1.2 as
long as the point at which the map on the right-hand side takes
its maximum value is less than that of the point equilibrium. If
Assumption 1.2 is not satisfied, the function is monotone increas-
ing up to the unique positive point equilibrium, and thus all so-
lutions converge to the positive equilibrium, and the convergence
is monotone. If all xn > K , we have a monotonically decreas-
ing sequence. If we fix B in (6) and (7) and consider the growing
A, the equation loses stability and experiences transition to chaos
through a series of period-doubling bifurcations.

The article has the following structure. In Section 2 we relax
the control parameter α, replacing it with the variable control
sequence {αn}n∈N0 , and yielding the equation

xn+1 = f (xn) − αn(f (xn) − xn) = (1 − αn)f (xn) + αnxn,
x0 > 0, n ∈ N0. (8)

We identify a range over which {αn}n∈N0 may vary determinis-
tically while still ensuring the global asymptotic stability of the
positive equilibrium K . We confirm that, without imposing any
constraints on the range of values over which the control sequence
{αn}n∈N0 may vary, there exists an invariant interval, containing K ,
under the controlledmap.We then introduce constraints on terms
of the sequence {αn}n∈N0 which ensure that all solutions will even-
tually enter this invariant interval.

In Section 3, we assume that the variation of αn around α is
bounded and stochastic, which results in a PBC equation with
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