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h i g h l i g h t s

• Generalizations of assortativity metrics for multilayer networks are provided.
• The metrics show that degree–degree correlations should be measured system-wide.
• The new tools are applied to study disease spreading on multilayer networks.
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a b s t r a c t

We propose a generalization of the concept of assortativity based on the tensorial representation of
multilayer networks, covering the definitions given in terms of Pearson and Spearman coefficients.
Our approach can also be applied to weighted networks and provides information about correlations
considering pairs of layers. By analyzing the multilayer representation of the airport transportation
network, we show that contrasting results are obtained when the layers are analyzed independently or
as an interconnected system. Finally, we study the impact of the level of assortativity and heterogeneity
between layers on the spreading of diseases. Our results highlight the need of studying degree–degree
correlations on multilayer systems, instead of on aggregated networks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The use of network science to study the structure and dynam-
ics of complex systems has proved to be a successful approach to
understand the organization and function of several natural and ar-
tificial systems [1–4]. The traditional framework used up to a few
years ago represents the structure of complex systems as single-
layer (also referred to as monoplex) networks, in which only one
type of connection is accounted for. However, this approach is lim-
ited because most natural and artificial systems such as the brain,
our society or modern transportation networks [5,6], are made up
by different constituents and/or different types of interaction. In-
deed, their structure is organized in layers. For instance, in social
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networks individuals can be connected according to different so-
cial ties, such as friendship or family relationship (e.g. [7]). In trans-
portation networks, routes of a single airline can be represented
as a network, whose vertices (destinations) can be mapped into
networks of several companies [8]. Gene co-expression networks
consist of layers, each one representing a different signaling path-
way or expression channel [9]. Therefore, mapping out the struc-
ture of these and similar systems as amonoplex network could lead
to miss relevant information that could not be captured if the sin-
gle layers are analyzed separately nor if all layers are collapsed al-
together in an aggregated graph. Additionally, note that in most
of these interconnected systems, the information travels not only
among vertices of the same layer, but also between pairs of layers.

Recent advances in modeling the aforementioned systems in-
clude new mathematical formulations [10], the generalization of
different metrics [6,10–12] and the impact of the multilayer struc-
ture on several dynamical processes [13,11,14–16]. Although clus-
tering [12], centrality [11,17] and spectral properties [13,11,18]
of multilayer networks have been addressed, a measure to quan-
tify degree–degree correlations in multilayers is still lacking.
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Degree–degree correlations is a fundamental property of single-
layer networks, impacting the spreading of diseases, synchroniza-
tion phenomena and systems’ resilience [19,3]. Additionally, it has
been reported that different correlations arise in different kinds
of networks: social networks are in general assortative, meaning
that highly connected nodes tend to link with each other, whereas
technological and biological systems have disassortative struc-
tures, in which high degree nodes are likely attached to low degree
nodes [20].

For networks made up of more than one layer, only recently,
Nicosia and Latora [21] considered the correlation between the
degrees in twodifferent layers. However, theirmethodology is only
for node-aligned multiplex networks, which are special cases of
multilayer networks (see [5]). In fact,multiplex networks aremade
up of N nodes that can be in one or more interacting layers. The
links in each layer represent a given mode of interaction between
the set of nodes belonging to that layer, whereas links connecting
different layers stand for the different modes of interaction
between objects involved in [5].

In this paper we study degree–degree correlations in mul-
tilayer systems and propose a way to generalize previous as-
sortativity metrics by considering the tensorial formulation
introduced in [10]. Our approach also covers a weighted version of
assortativity [22] and the case in which the assortativity is given
by the Spearman correlation coefficient, generalizing the defini-
tion in [23]. Aside from those, it worth mention the generaliza-
tion for weighted and directed networks [24]. The study of a real
dataset corresponding to the airport transportationnetwork shows
a contrasting behavior between the analyses of each layers inde-
pendently and altogether, which reinforces the need for such a
generalization of the assortativity measure. Finally, we study the
influence of degree–degree correlations on epidemic spreading in
multilayer networks. We verify that the impact of the disease de-
pends on degree–degree correlations and also on the level of het-
erogeneity between the layers.

2. Assortativity in multilayer networks

Tensors are suitable for representation of multilayer networks.
As showed in [10], tensors allow us to consider a branch of new
relationships between nodes and layers, by encoding a multilayer
network as a fourth order mixed tensor, Mαδ̃

βγ̃
, i.e. 2-covariant and

2-contravariant basis, in the Euclidean space. Such representation
is convenient for many operations, as discussed in [10]. We use
the definition of the interlayer adjacency tensor Cα

β (h̃r̃) that is a
second order tensor which has the information of the relationships
between nodes in layers h̃ and r̃ . Note that Cα

β (r̃ r̃) is the adjacency
matrix for the layer r̃ and belongs to RN×N space. Then, the
multilayer adjacency tensor is expressed as the summation over all
layers L of the tensorial product of the adjacency tensors, Cα

β (h̃r̃),
and the canonical Euclidean basis. Mathematically,

Mαγ̃

βδ̃
=

L
h̃,r̃

Cα
β (h̃r̃)E δ̃

γ̃ (h̃r̃) (1)

which belongs to RN×N×L×L space.
Following Einstein’s summation convention, the assortativity

coefficient can be written as

ρ(Wα
β )

=
M−1Wα

β Q
βQα −


1/2M−1
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β Qαuβ
+ Wα

β Q
βuα

2
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β (Q β )2uα


−
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β Qαuβ + Wα
β Q βuα

2
(2)

where u is the 1-tensor, which is a tensor of rank 1 and has all
elements equal to 1, Wα

β is a second order tensor that summarizes
the information that is being extracted and M = Wα

β U
β
α is a

normalization constant.
Let us explain in more details all terms appearing in the

expression of ρ(Wα
β ). First, we define

Q α
= Wα

β u
β , (3)

which is a 1-contravariant tensor and

Qβ = Wα
β uα (4)

which is a 1-covariant tensor. Moreover, the indices are related
to the direction of the relationships between nodes. Such a choice
ensures a more general expression, capturing degree correlations
on non-symmetric tensors and, consequently, in directed and
weighted networks.

Due to themultiplex nature of such systemswe obtain different
types of correlations, which can be uncovered by operating on the
adjacency tensor. First of all, it is possible to extract a single layer
by the operation called single layer extraction [10]. In this case, the
adjacency tensor is defined as

Wα
β = Cα

β (r̃ r̃) = Mαγ̃

βδ̃
E δ̃

γ̃ (r̃ r̃), (5)

which is a simple projection on the canonical basis, E δ̃
γ̃
(r̃ r̃). It

is noteworthy that the results obtained from this projection are
the same as those obtained by considering the layer r̃ as a
monoplex network and applying the traditional formulation of
assortativity [20]. On the other hand, to consider all layers together,
we can use the projected network, which is a weighted single-layer
network. Formally it is given as

Wα
β = Pα

β = Mαδ̃
βγ̃U

γ̃

δ̃
. (6)

Note that the projection presents self-edges and, as argued in [10],
it is different from a weighted monoplex network, since self-edges
code for inter-layer couplings between different replica of the
same object. Thus they have a different meaning with respect to
other edges. A version of the projectionwithout self-edges is called
overlay network and is given as the contraction over the layers [10],
i.e.,

Wα
β = Oα

β = Mαγ̃

βγ̃
. (7)

Observe that the overlay network does not consider the contribu-
tion of the interlayer connections, whereas the projection does. As
we will see later, comparisons between the assortativity of those
two different representations of the system reveal the key role of
such inter-links.

In both cases, i.e., for the overlay and the projected networks,
we extract degree–degree correlations. Nodeswith similar degrees
connected in the same or different layers contribute positively to
the assortativity coefficient. On the other hand, the connections
between hubs and low degree nodes in the same or different
layers decrease the assortativity. Self-edges always increase the
assortativity, which yields different values of assortativity for the
overlay and the projected networks. This gives information on
the nature of the coupling between different replicas of the same
object among different layers.

In some applications, it is interesting to calculate a pair-wise
correlation between a set of nodes, for instance, between couple
of layers. Thus, we propose a new operation, that we call selection,
which is a projection over a selected set of layers:

Wα
β (L) = Sα

β (L) = Mαδ̃
βγ̃ Ω

γ̃

δ̃
(L), (8)
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