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h i g h l i g h t s

• The consensus dynamics model is applied to a random rectangular graph (RRG).
• An RRG generalizes the random geometric graph by embedding the nodes in a unit rectangle.
• Bounds for the diameter and the algebraic connectivity of RRG are obtained.
• It is proved that when the rectangle is elongated the RRGs become ‘large worlds’ with poor connectivity.
• It is proved that when the rectangle is elongated the time for consensus in the RRG grows to infinity.
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a b s t r a c t

A random rectangular graph (RRG) is a generalization of the random geometric graph (RGG) in which
the nodes are embedded into a rectangle with side lengths a and b = 1/a, instead of on a unit square
[0, 1]2 . Two nodes are then connected if and only if they are separated at a Euclidean distance smaller
than or equal to a certain threshold radius r . When a = 1 the RRG is identical to the RGG. Here we apply
the consensus dynamics model to the RRG. Our main result is a lower bound for the time of consensus,
i.e., the time at which the network reaches a global consensus state. To prove this result we need first
to find an upper bound for the algebraic connectivity of the RRG, i.e., the second smallest eigenvalue
of the combinatorial Laplacian of the graph. This bound is based on a tight lower bound found for the
graph diameter. Our results prove that as the rectangle in which the nodes are embedded becomes more
elongated, the RRG becomes a ’large-world’, i.e., the diameter grows to infinity, and a poorly-connected
graph, i.e., the algebraic connectivity decays to zero. The main consequence of these findings is the proof
that the time of consensus in RRGs grows to infinity as the rectangle becomes more elongated. In closing,
consensus dynamics in RRGs strongly depend on the geometric characteristics of the embedding space,
and reaching the consensus state becomes more difficult as the rectangle is more elongated.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world networked systems are embedded into geo-
metrical spaces. These spatial networks, as they are known, may
represent many different kinds of scenarios [1]. For instance, in ur-
ban street networks the nodes describe the intersection of streets,
which are represented by the edges of the graph. These streets
and their intersections are embedded in the two-dimensional
space representing the surface occupied by the corresponding city.
Similar situations occur with infrastructural and transportation
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systems ranging from water supply networks and railroads to the
internet and wireless sensor networks (WSNs). In WSNs [2], the
nodes represent the sensors which are deployed on a given geo-
graphical region and their communication defines the connectivity
of the nodes. This is analogous to many other communication sys-
tems ranging from mobile phones to radio signals. On a different
scale we can mention the vascular and cellular networks of nodes
embedded into cells and biological tissues [3]; protein residue net-
works [3]; the networks of channels in fractured rocks [4]; the
networks representing the corridors and galleries in animal nests
[5,6]; and landscape networks [7], among others. For modeling
these spatial networks it is necessary to have a theoretical model
that captures both the topological features typical of complex net-
works and the spatial embedding of these specific kinds of systems.
The most commonly used model for spatial networks is the so-
called random geometric graph (RGG) [8–11]. In RGGs each node
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is randomly assigned geometric coordinates and then two nodes
are connected if the (Euclidean) distance between them is smaller
than or equal to a certain threshold r .

The RGG model has been widely used in the study of wireless
sensor networks (WSNs) and peer-to-peer networks [12–14],
where the problem of consensus has received great attention due
to the fact that it allows the achieving of tasks with a minimum
overheadof communication [15–19]. In the consensus protocols, as
they are known in technological applications, the problem consists
of making the scalar states of a set of agents converge to the same
value under local communication constraints [20,21]. Thus, since
the communication requires only local information there is no
congestion due to network traffic. RGGs are also used to model
populations which are geographically constrained in a certain
region, like a city. This scenario is important, for instance, for the
analysis of epidemic spreading in such populations [22,17,23,24].
In this sense Riley et al. [25] have remarked that RGGs ‘‘provide
a nice way of escaping the lack of local correlation and clustering
that are implicit properties of the configuration graphs often used
to explore epidemic dynamics’’. In a similar fashion, RGGs can be
used tomodel structured populations inwhich opinions, instead of
viruses, are propagated. In this case the RGGs also capture verywell
the geographic constraints of the population and, in comparison
with other models [26], they ‘‘are more realistic for a number of
reasons: (i) RGG is isotropic (on average) while regular lattice is
not; (ii) the average degree for an RGG can be set to an arbitrary
positive number, instead of a small fixed number for the lattice; (iii)
RGGs closely capture the topology of randomnetworks of short-range-
connected spatially-embedded artificial agents’’.

In the formulation of the RGG model it is assumed that the
nodes are uniformly and independently distributed on a unit
square (or a higher dimensional hypercube in the general case) [8,
9]. This unit square represents the area on which the agents are
interacting to reach a consensus state, and it could be a workplace,
a city, or a forest, just to mention some examples. Such a square-
like area is typical of many real-world scenarios. For instance, the
city of San Francisco (USA) is known as the ‘‘seven-by-seven-mile
square’’, due to the fact that the mainland part of the city is a
square of nearly 11 km by 11 km. However, if we consider other
cities, like Manhattan, the picture looks very different. Manhattan
is 13.4 miles (21.6 km) long and 2.3 miles (3.7 km) wide, which
resembles a rectangular shape instead of a square one. Based
on this necessity of considering the influence of the rectangular
shape on the topological and dynamical properties of the random
networks deployed on these areaswe have recently introduced the
random rectangular graph (RRG)model [27]. In this case, the nodes
are uniformly and independently distributed on a unit rectangle
of given side lengths. When both sides are of the same length we
recover the RGG in such a way that the RRG model generalizes the
RGG one.

Here, we are interested in investigating analytically and
computationally how the elongation of the rectangle in the
RRG affects the consensus dynamics taking place on the nodes
and edges of the networks constructed on them. We start by
introducing the concept of the random rectangular graph (RRG),
and continue with the description of the consensus model to be
considered. Then, we state the main result of this work which
proves that for a RRG with a fixed number of nodes and a given
connection radius, the time for reaching consensus grows to
infinity when the rectangle is very elongated. We finally support
our analytic results with computational simulations for RRGs.

2. Preliminaries

Here we present some definitions, notations, and properties
which will be used in this work (see [3]). For the basic definitions

about networks the reader is directed to the literature (see for
instance [3]). The notation used here is standard. For instance,
ki designate the degree of the node i. The matrix K = diag (ki)
designates the degree matrix of the graph and the matrix L =

K − A is the graph Laplacian, where A stands for the adjacency
matrix of the graph. It has entries

Luv =

ki if u = v
−1 if (u, v) ∈ E
0 otherwise

∀u, v ∈ V .

The eigenvalues of the Laplacian matrix are denoted here by:
0 = µ1 ≤ µ2 ≤ · · · ≤ µn. If the network is connected the
multiplicity of the zero eigenvalue is equal to one, i.e., 0 = µ1 <
µ2 ≤ · · · ≤ µn and the smallest nontrivial eigenvalueµ2 is known
as the algebraic connectivity of graph [28,29]. Let U be thematrix of
orthonormalized eigenvectors ψ⃗j of L, i.e., U =


ψ⃗1 · · · ψ⃗n


.

The eigenvector ψ⃗2 associated with the algebraic connectivity is
known as the Fiedler vector [28]. Let Λ be the diagonal matrix of
eigenvalues of the Laplacian matrix. Then, L = UΛUT .

2.1. Random rectangular graphs

TheRGG is definedbydistributinguniformly and independently
n points in the unit d-dimensional cube [0, 1]d [8]. Then, two points
are connected by an edge if their Euclidean distance is at most r ,
which is a given fixed number known as the connection radius. That
is, we create a disk of radius r centered at each node, and every
node inside that disk is connected to the central node. This disk
plays the role of the area of influence of a given node, such as the
area of coverage of a mobile or wireless sensor.

In [27] we have considered a unit hyperrectangle as the
Cartesian product [a1, b1] × [a2, b2] × · · · × [ad, bd] where ai, bi ∈

R, ai ≤ bi, and 1 ≤ i ≤ d instead of the unit square of the
RGG. Hereafter we will restrict ourselves to the 2-dimensional
case, which corresponds to a rectangle of unit area. Now, the RRG
has been defined by distributing uniformly and independently n
points in the unit rectangle [a, b] and then connecting two points
by an edge if their Euclidean distance is at most r . The rest of the
construction process remains the same as for the RGG. This implies
that RRG → RGG as (a/b) → 1 and consequently the RRG is a
generalization of the RGG.

In Fig. 1 we illustrate two RRGs with different values of the
rectangle side length a and the same number of nodes and edges.
In the first case when a = 1 the graph corresponds to the classical
random geometric graph in which the nodes are embedded into a
unit square. The second case corresponds to a = 2 and it represents
a slightly elongated rectangle.

A few important structural parameters of RRGs have been
determined analytically in a previous work by the current authors
(see [27]). They include the average degree, the probability that
the graphs are connected, their degree distributions, average path
length and clustering coefficient.

2.2. Consensus dynamics on graphs

Let us consider that the state of the nodes of the graph at time
t is stored in the vector u⃗ (t). Then, the variation of the state of the
node i with time is controlled by the equation [21,20]:

⃗̇ui (t) =


(i,j)∈E


u⃗j (t)− u⃗i (t)


, i = 1, 2, . . . , n, (1)

which, for the kind of graphswe analyze in thiswork can bewritten
as

⃗̇ui (t) = −

n
j=1

aij

u⃗i (t)− u⃗j (t)


, i = 1, 2, . . . , n. (2)
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