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h i g h l i g h t s

• We introduce anewanalyticalmodel
of coupled cascades in flow net-
works.
• We find that increasing coupling

enhances the safety of the coupled
systems.
• However, increasing couplingmakes

the systems more likely to fail to-
gether.
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a b s t r a c t

In this manuscript, we investigate the abrupt breakdown behavior of coupled distribution grids under
load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction
of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading
behavior due to line overloads to the case of interdependent networks and find evidence of first order
transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase
in the couplings between the grids has two competing effects: on the one hand, it increases the safety
region where grids can operate without withstanding systemic failures; on the other hand, it increases
the possibility of a joint systems’ failure.

© 2015 Elsevier B.V. All rights reserved.

∗ Corresponding author at: ISC-CNR Physics Dept., Univ. dir Roma ‘‘La Sapienza’’,
00185 Roma, Italy.

E-mail address: antonio.scala@cnr.it (A. Scala).
URL: https://sites.google.com/site/antonioscalaphys/ (A. Scala).

1. Introduction

Physical Networked Infrastructures (PNIs) such as power, gas or
water distribution are at the heart of the functioning of our society;
they are verywell engineered systems designed to be at leastN−1
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robust—i.e., they should be resilient to the loss of a single compo-
nent via automatic or human guided interventions. The constantly
growing size of PNIs has increased the possibility of multiple fail-
ures which escape the N − 1 criteria; however, implementing ro-
bustness to any sequence of k failures (N−k robustness) requires an
exponentially growing effort inmeans and investments. In general,
since PNIs can be considered to be aggregations of a large number
of simple units, they are expected to exhibit emergent behavior,
i.e. they show as a whole additional complexity beyond what is
dictated by the simple sum of its parts [1].

A general problem of PNIs are cascading failures, i.e. events
characterized by the propagation and amplification of a small
number of initial failures that, due to non-linearity of the
system, assume system-wide extent. This is true even for systems
described by linear equations, since most failures (like breaking a
pipe or tripping a line) correspond to discontinuous variations of
the system parameters, i.e. are a strong non-linear event. This is a
typical example of emergent behavior leading to one of the most
important challenges in a network-centric word, i.e. systemic risk.
An example of systemic risk in PNIs are the occurrence of blackout
in one of the most developed and sophisticated system, i.e. power
networks. It is important to notice that if such large outages were
intrinsically due to an emergent behavior of the electric power
systems, increasing the accuracy of power systems’ simulation
would not necessarily lead to better predictions of black-outs.

Power grids can be considered an example of complex
networks [2] and hence cascading failures in complex networks [3]
is field with important overlaps with system engineering and
critical infrastructures protection; however, most of the cascading
models are based on local rules that are not appropriate to describe
systems like power grids [4] that, due to long range interactions,
require a different approach [5,6].

Another important issue is increasing interdependence among
critical infrastructures [7]; seminal papers have pointed out the
possibility of the occurrence of catastrophic cascades across
interdependent networks [8,9]. However, there is still room for
increasing the realism of suchmodels [10], especially in the case of
electric grids or gas pipelines. In this paper wemove a preliminary
step in such direction, trying to capture the systemic effect for
coupled networks with long range interactions.

To highlight the possibility of emergent behavior, we will
first abstract PNIs in order to understand the basic mechanisms
that could drive systemic failures; in particular, we will consider
finite capacity networks where a commodity (a scalar quantity) is
produced at source nodes, consumed at load nodes and distributed
as a Kirchhoff flow (e.g. fluxes are conserved). For such systems,
we will first introduce a simplified model that is amenable of a
self-consistent analytical solution. Subsequently, we will extend
such model to the case of several coupled networks and study
the cascading behavior under increasing stress (i.e. increasing flow
magnitudes).

In Section 2, we develop our simplified model of overload cas-
cades first in isolated (Section 2.2) and coupled systems (Sec-
tion 2.3). In particular, in Section 2.1, we introduce the concept of
flow network with a finite capacity and relate conservation laws
to Kirchhoff’s equations and to the presence of long range correla-
tion. To account for such correlations, in Section 2.2 we introduce a
mean field model for the cascade failures of flow networks; in Sec-
tion 2.3, we extend themodel to the case of several interacting sys-
tems. Finally, in Section 3 we discuss and summarize our results.

2. Model

2.1. Flow networks

Let us consider a network G = (V, E, c) where V = {1 ≤
i ≤ |V|} is the node set, E ⊆ V × V is the set of edges and

Algorithm 1 Network cascading
Set initial failures F 0

t ← 0
repeat

t ← t + 1
Calculate flows ft ← F(p,G|F t−1)
Calculate new failures ∆F t

← {(ij) : |f tij | > cij}
F t
← F t−1

∪∆F t

until ∆F t
≡ ∅

c = {c(i,j)} is the vector characterizing the capacities of the edges
(i, j). We associate to the nodes a vector p = {pi} that characterize
the production (pi > 0) or the consumption (pi < 0) of a com-
modity. We further assume that there are no losses in the network
(i.e.


i pi = 0); hence, the total load on the network is

L =

i:pi>0

pi.

The distribution of the commodity is described by the fluxes
f = {f(i,j)} on the edges (i, j) ∈ E that are supposed to respect
Kirchhoff equations, i.e.

j

f(i,j) = pi. (1)

The relation among fluxes and demand/load is described by
constitutive equations

f = F(p,G) (2)

where in general Eq. (2) is non-linear but satisfies Eq. (1).
The finite capacity c(i,j) constrains the maximum flux on link

(i, j)

|f(i,j)| < c(i,j) (3)

above which the link will cease functioning. As an example, power
lines are tripped (disconnected) when power flow goes beyond a
certain threshold. Since flows will redistribute after a link failure,
it could happen that other lines get above their flow threshold and
hence consequently fail, eventually leading to a cascade of failures.
A typical algorithm to calculate the consequences of an initial set
of line failures F 0

= {(ij) failed} is Algorithm 1.
Here F(p,G|F ) calculates the flows subject to the constraints

that flows are zero in the failure set of edges (i, j) ∈ F .
To develop a general model that helps us understanding the

class of failures that can affect Kirchhoff-like flow networks, let us
start from rewriting Eq. (1) in matrix form

BT f = p (4)

using the incidence matrix B that associates to each link (i, j) its
nodes i and j and vice-versa. B is an |V| × |E | matrix where each
column corresponds to an edge (i, j); its columns are zero-sum and
the only two non-zero elements havemodulus 1 and are on the ith
and on the jth row.

The matrix B is related to the Laplacian BTB of the system;
in particular, it shares the same right eigenvalues and the same
spectrum (up to squaring operations); hence, it is a long-range
operator since perturbation on a node of the system can be
reflected on nodes far away on the network [5,6].

2.2. Mean field model for cascades on a single network

Due to the long range nature of Kirchhoff’s equations, to under-
stand the qualitative behavior of such networks we can resort to a
mean field model of flow networks where one assumes that when
a link fails, its flow is re-distributed equally among all other links.



Download English Version:

https://daneshyari.com/en/article/1895293

Download Persian Version:

https://daneshyari.com/article/1895293

Daneshyari.com

https://daneshyari.com/en/article/1895293
https://daneshyari.com/article/1895293
https://daneshyari.com

