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a b s t r a c t

We study the dynamics of network-coupled phase oscillators in the presence of coupling frustration.
It was recently demonstrated that in heterogeneous network topologies, the presence of coupling
frustration causes perfect phase synchronization to become unattainable even in the limit of infinite
coupling strength. Here, we consider the important case of heterogeneous coupling functions and extend
previous results by deriving analytical predictions for the total erosion of synchronization. Our analytical
results are given in terms of basic quantities related to the network structure and coupling frustration.
In addition to fully heterogeneous coupling, where each individual interaction is allowed to be distinct,
we also consider partially heterogeneous coupling and homogeneous coupling in which the coupling
functions are either unique to each oscillator or identical for all network interactions, respectively.
We demonstrate the validity of our theory with numerical simulations of multiple network models,
and highlight the interesting effects that various coupling choices and network models have on the
total erosion of synchronization. Finally, we consider some special network structures with well-known
spectral properties, which allows us to derive further analytical results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Self-organization and emergent collective behavior represent
universal concepts that are vital in many nonlinear processes
[1,2]. Synchronization of large ensembles of coupled oscillators
plays a particularly important role in our understanding of com-
plex and network-coupled dynamical systems [3,4]. Examples
of the importance of synchronization can be found in natural
phenomena, for instance the functionality of cardiac pacemak-
ers [5], mammalian circadian rhythms [6], and rhythmic flash-
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ing of fireflies [7], as well as engineered systems, for instance
arrays of Josephson junctions [8], the power grid [9], and pedes-
trian bridges [10]. A particularly useful model for studying the
synchronization of nonidentical oscillators was developed by Ku-
ramoto [11], who showed that under suitable conditions the dy-
namics of N coupled oscillators can be reduced to the dynamics of
N phase angles θi, for i = 1, . . . ,N . When placed on a network
whose structure dictates the oscillators’ interaction patterns, the
evolution of each phase is given by

θ̇i = ωi + K
N
j=1

AijHij(θj − θi), (1)

where the natural frequency ωi describes the preferred frequency
of oscillator i in the absence of coupling, K ≥ 0 is the global
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coupling strength, the adjacency matrix Aij encodes the network
interactions, which is assumed to be undirected such that Aij = Aji,
and Hij(θ) is the coupling function that describes the functional
effect of oscillator j on oscillator i, which is assumed to be
2π-periodic and continuously differentiable.

The dynamics exhibited by Eq. (1) have been studied in
various contexts [12–30] and have advanced our understanding of
collective behavior, particularly regarding the interplay between
structure and dynamics and their effects on synchronization.
Typically, the extent of phase synchronization of the oscillators
is measured by the classical Kuramoto order parameter r that is
defined by [11]

reiψ =
1
N

N
j=1

eiθj , (2)

where the complex number reiψ represents the oscillators’ cen-
troid in the complex unit circle. In particular, the order param-
eter r ranges from 0 to 1, indicating complete incoherence and
perfect synchronization, respectively, while intermediate values
typically correspond to partial synchronization. Alternatively, sev-
eral studies have defined the degree of phase synchronization
using a combination of the collection of local order parameters,
defined rieiψi =

N
j=1 Aijeiθj for i = 1, . . . ,N [14,24,28].

A key element of the model in Eq. (1) is the choice of
coupling functions Hij(θ) that defines the interactions between
oscillators. For instance, the choice Hij(θ) = sin(θ) yields the
classical Kuramoto model [11], while the presence of additional
modes can give rise to multi-branch entrainment, a.k.a. cluster
synchronization [31–38]. Here, we focus our attention on systems
with coupling frustration, as indicated by one or more non-zero
values of the quantity

hij = Hij(0)/
√
2H ′

ij(0). (3)

The physical interpretation of coupling frustration corresponds to
the case where the networks’ interaction terms do not all vanish
when all phases are equal. The presence of coupling frustration is
vital in the modeling of excitable and reaction–diffusion dynam-
ics for the reason that neighboring elements typically do not react
simultaneously, but rather one after another [39]. Many such
examples exist in biological and chemical systems, including
neuron excitation [40], cardiac dynamics [41], and the Be-
lousov–Zhabotinsky reaction [42]. Additionally, coupling frus-
tration has been linked to the emergence of chimera states
[43–51], non-universal synchronization transitions [52], and other
effects [53].

In a recent publication [54] we reported a novel phenomenon
for networks of coupled oscillators that we called erosion of syn-
chronization. In particular, we found that in the presence of both
coupling frustration and structural heterogeneity the perfectly
synchronized state (i.e., r = 1, or equivalently, θ1 = θ2 = · · · =

θN ) becomes unattainable in steady-state even in the limit of in-
finite coupling strength. To quantify the total erosion of synchro-
nization in a network, we consider the quantity 1 − r in the limit
K → ∞, denoted 1−r∞.We demonstrated this by considering the
case of homogeneous coupling, i.e.,Hij(θ) = H(θ), and subsequently
showed that the total erosion of synchronization could be sepa-
rated into the product of two terms describing the contributions
of coupling frustration and structural heterogeneity, respectively,
and that both of these terms amplify the total erosion of synchro-
nization.

In this paper, we provide a more complete description of
this phenomenon. In particular, we extend our previous results
to account for the important case of heterogeneous coupling,
i.e., when the coupling function governing the interaction between

each pair of network neighbors may be distinct. We refer to this
most general case, where each Hij(θ) is potentially different, as full
coupling heterogeneity. In this casewe assume that each undirected
link has an associated coupling function, so that Hij(θ) = Hji(θ).
We also treat the case where each oscillator has its own coupling
function, i.e., Hij(θ) = Hi(θ), which we refer to as partial
coupling heterogeneity. Unlike the homogeneous coupling case,
in both the fully and partially heterogeneous coupling cases we
find that the total erosion of synchronization cannot be separated
into a product of contributions from the coupling frustration and
structural heterogeneity.

The remainder of this paper is organized as follows. In Section 2
we present our theoretical results, which extend previous results
for homogeneous coupling to the cases of both full and partial cou-
pling heterogeneity. In Section 3 we present results from numeri-
cal simulations that support our theory and explore the interplay
between coupling frustration and structural heterogeneity. In Sec-
tion 4 we study the stability of the synchronized state. In Section 5
we investigate erosion of synchronization in several networkmod-
els with well-known spectral properties, allowing us to develop
further analytical results. In particular, we consider the star and
chain networks, as well as Watts–Strogatz networks [55]. Finally,
in Section 6 we conclude with a discussion of our results.

2. Theory

In this section we present a theoretical framework for quanti-
fying the erosion of synchronization for the dynamics defined in
Eq. (1). We begin by considering the case of fully heterogeneous
coupling, i.e., where each undirected link connecting oscillators i
and j have a potentially distinct coupling function Hij(θ). We note
that in this case we assume that the coupling is structurally sym-
metric, i.e., Hij(θ) = Hji(θ), however no symmetry conditions are
put on the functions Hij(θ). In particular, Hij(θ) need not be anti-
symmetric in θ , so that in general Hij(θ) is not necessarily equal
to −Hij(−θ). We also consider the case of partially heterogeneous
coupling, i.e., when each oscillator has its own coupling functions,
Hij(θ) = Hi(θ). Finally, we compare these results to the originally
derived results for homogeneous coupling, i.e.,Hij(θ) = H(θ), pre-
sented in Ref. [54].

2.1. Fully heterogeneous coupling

We begin by following Ref. [27] and consider the dynamics of
Eq. (1) in the strong coupling regime, i.e., r ≈ 1. In typical net-
works, such a state can be attained in a variety of ways, most read-
ily by considering either a sufficiently large coupling strength, or
a set of natural frequencies with a sufficiently small spread. It is
worth pointing out that these two situations are equivalent up to
a rescaling of time, and thus the results presented here are valid
in both cases. In the strong coupling regime the oscillators become
tightly packed around themean phaseψ , implying that |θi −θj| ≪

1 for all (i, j) pairs. Thus, the contribution of each pair-wise inter-
action can be linearized to Hij(θj − θi) ≈ Hij(0) + H ′

ij(0)(θj − θi),
and Eq. (1) can be approximated by

θ̇i ≈ ωi + Kd̃i − K
N
j=1

L̃ijθj, (4)

or rather in vector form,

θ̇ ≈ ω + K d̃ − KL̃θ. (5)

Here, d̃ and L̃ represent the weighted degree vector and weighted
Laplacianmatrix. In contrast to the unweighted degree vector d and
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