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h i g h l i g h t s

• We give mathematical results on dynamics of networks of degrade-and-fire oscillators.
• The model eludes standard assumptions on evolution equations, such as monotonicity.
• We prove convergence to periodic behavior under mild assumption on firing sequence.
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a b s t r a c t

Networks of coupled degrade-and-fire (DF) oscillators are simple dynamical models of assemblies
of interacting self-repressing genes. For mean-field interactions, which most mathematical studies
have assumed so far, every trajectory must approach a periodic orbit. Moreover, asymptotic cluster
distributions can be computed explicitly in terms of coupling intensity, and a massive collection of
distributions collapseswhen this intensity passes a threshold. Here,we show thatmost of these dynamical
features persist for an arbitrary coupling topology. In particular, we prove that, in any system of DF
oscillators for which in and out coupling weights balance, trajectories with reasonable firing sequences
must be asymptotically periodic, and periodic orbits are uniquely determined by their firing sequence. In
addition to these structural results, illustrative examples are presented, for which the dynamics can be
entirely described.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

To predict the long-term behavior in networks of interacting
units is a predominant challenge in nonlinear science, with ap-
plications in many disciplines, from physics to biology and to the
social sciences, to cite a few examples [1]. In particular, a recur-
rent question is to characterize collective properties such as syn-
chronization and predictability in terms of the network topology
and interaction strengths [2,3]. While this problem has received
considerable attention from theoreticians, mathematically rigor-
ous descriptions of (global) nonlinear behavior are scarce, and only
address limited circumstances, e.g.weak-coupling regimes [4] and
assemblies of pulse coupled oscillators with excitatory coupling
[5–7]. Hence, the theory remains largely incomplete and network
phenomenology still lacks a comprehensive rigorous footing.
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In the last years, a model for the population dynamics of
simple gene oscillators was introduced [8], inspired from a series
of experiments on colonies of synthetic genetic circuits [9,10],
and resulting from the simplification of more standard delay-
differential equation models [11]. In a few words (see Section 2
for more details), it consists of a collection of pulse coupled
oscillators with inhibitory coupling, and is reminiscent of the well-
known integrate-and-fire model in neuroscience; however, the
phenomenologies of each are distinct.

In the case of mean field coupling, a mathematically rigorous
global description of the dynamics, notably its clustering and
asymptotic properties,was achieved for every parameter value and
for arbitrary numbers of oscillators (and also for the continuum
approximation) [12,8]. Analogous features were also described for
trajectories issued from typical random initial conditions [13]. In
addition, a recent study expanded the analysis to a more elaborate
model that involves a global activator field in the dynamics [14].
Motivated by includingmore realistic features in themathematical
analysis, the current paper aims to extend previous (deterministic)
results to arbitrary coupling topologies on populations of arbitrary
size.
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A typical property of degrade-and-fire models is their firing
process (accompanied with gene level resetting) that occurs when
the repressor field becomes (locally) negligible and can no longer
prevent gene expression. (Instantaneous resets are used here as
a naive representation of massive gene expression during a tiny
interval of time.) In the case of mean field coupling, after cell i
has fired, every other cell (not simultaneously firing with i) must
fire once, before i fires again. The ordering in which cells fire does
not change from cycle to cycle (unless cells synchronize and begin
firing together). More importantly, this periodic and exhaustive
cycle of firings imposes asymptotic periodicity on the trajectories
themselves.

While periodic exhaustive firing may not always hold for an
arbitrary coupling topology (exampleswill be provided below), the
main result of this paper (Theorem 5.1) states that, when this is
the case, the trajectory must asymptotically approach a periodic
configuration, provided that all cells are path-wise connected
through coupling and in and out weights balance at every node.
Even though this conclusion does not a priori cover all trajectories
of degrade-and-fire systems, it proves that a sufficiently regular
firing behavior implies a regular asymptotic behavior of the
trajectories themselves, under a mild restriction on the coupling
structure. Together with the analysis of orbits with symmetric
components, this result paves the way to a comprehensive
understanding of the functioning of arbitrary systems of coupled
DF oscillators.

The paper is organized as follows. The DFmodel ofN-oscillators
is defined in Section 2 and global well-posedness of the dynamics
is proved. In Section 3, we study properties of the firing events,
and use these features to introduce non-degenerate trajectories
with exhaustive firing sequences; such trajectories are at the
center of attention in the rest of the paper. In Section 4, we
prove that there can be at most one periodic orbit associated
with each such sequence, and provide examples of existence and
non-existence, in the case of nearest neighbor coupling. Section 5
contains Theorem 5.1 and its proof, while the paper is completed,
in Section 6, with a study of the full dynamics for N = 2 and N = 3
cells (assuming some coupling symmetry in the latter case).

2. The degrade-and-fire dynamics

We consider the degrade-and-fire (DF) dynamics of single
self-repressor genes in a colony of cells, driven by intercellular
coupling [8]. In this context, cells are indexed by {1, . . . ,N} (where
N ∈ N) and gene expression levels at time t ∈ R+ are represented
by the vector x(t) = (xi(t))Ni=1 ∈ [0, 1]N . Intercellular coupling of
genes in this population is mitigated by a repressor field Wx =

(Wxi)Ni=1, defined as the action of the linear operator W on the
vector x,

Wxi =

N
j=1

wijxj, ∀i ∈ {1, . . . ,N},

where the symbol W = (wij)
N
i,j=1 also denotes a stochastic non-

negative matrix. The dynamics depends as well on a threshold pa-
rameter η ∈ (0, 1), which is assumed to be small. Finally, we
impose that the matrix diagonal terms satisfy wii > η for all i.
(NB: Ref. [8] assumedmean field coupling, viz. Wxi = (1 − ϵ)xi +
ϵ
N

N
j=1 xj for all i.) Here, we consider for now any coupling satis-

fying the condition wii > η for all i ∈ {1, . . . ,N}, and later impose
additional constraintswhen asymptotic periodicity is investigated.

With these definitions in place, the DF time evolution of gene
expression levels is given by the following differential equation,
inspired by the delay-differential equation model in [11]:

ẋi(t) = −Sgn(xi(t)) ifWxi(t) > η,
xi(t) = xi(t − 0)
xi(t + 0) = 1 ifWxi(t) ≤ η.

(1)

In other words, the dynamics in cell i consists of two phases,
depending on the repressor fieldWxi(t).

• When Wxi(t) > η, the expression level xi(t) degrades at con-
stant speed −1, unless it has reached zero (in which case, it re-
mains at zero). In this phase, if we also have xj(t) > 0 for all
cells j such that wij > 0 (called influencing cells), the repressor
level Wxi(t) also decreases with speed 1. We may eventually
have Wxi(t) ≤ η, depending on expression level behaviors in
influencing cells.

• When Wxi(t) ≤ η, a firing takes place and resets the expres-
sion level to the value 1. The assumption wii > η ensures that
Wxi(t + 0) > η for the repressor field in cell i after resetting.
Hence, after every firing, the reset genes return to the degrade
phase for a positive-length time interval.

Accordingly, the behavior in each cell consists of an eternal
succession of degrading phases interrupted by instantaneous
firing, unless the repressor level becomes sufficiently high to
prevent any further firing and to maintain the gene level in a
vanishing stationary state.

Prior to investigating these behaviors in more detail, we first
make sure that the dynamics is globally well-posed. As the next
statement shows, this is granted by assuming that the evolution
beginswith a degrading phase in every cell. An element x ∈ [0, 1]N

is said to be admissible if Wxi > η for all i ∈ {1, . . . ,N}. (NB: any
x ∈ [η, 1]N is admissible.)

Lemma 2.1. For any admissible x ∈ [0, 1]N , Eq. (1) has a unique
global solution such that x(0) = x.

Proof. Local existence is a direct consequence of the admissibility
condition. Moreover, we have xi(t) = (xi − t)+ for all i, provided
that t ≥ 0 is sufficiently small. In fact, this expression holds up
until a firing occurs.

In addition, for every solution of (1), the function t → Wxi(t)
is left continuous in every cell; hence we must have Wxi(t) ≥ η
for all (i, t) (see Lemma 3.1 in [12]). Accordingly, the first time t1x
when a firing occurs, viz. the first firing time, is given by

t1x = inf{s > 0 : Wxi(s) = η for some i ∈ {1, . . . ,N}}.

Clearly, we have t1x < +∞ (and the infimum here is actually a
minimum).

Let the firing map F be defined on admissible vectors x ∈

[0, 1]N by Fx = x(t1x + 0). The assumption wii > η implies that
Fx is also admissible. Hence the second firing time t2x = t1 ◦ Fx
is also well-defined and we have xi(t) = (Fxi − t + t1x)+ for t ∈

(t1x, t2x]. By induction, one obtains an infinite sequence {tkx}k∈N of
firing times and a unique well-defined solution on every interval
(tkx, tk+1x].

To conclude, it remains to show that limk→+∞ tkx = +∞.
Assume for the sake of contradiction that t∞ = limk→+∞ tkx <
+∞. By the Pigeonhole Principle, there exist i ∈ {1, . . . ,N} and
a subsequence {kn}n∈N such that Wxi(tknx) = η for all n and
limn→+∞ tknx = t∞. For this i, the expression xi(tkn+1x) =


1 −

tkn+1x+tknx
+

, togetherwith the characterization of the firing time
tkn+1x, implies the estimate

η = Wxi(tkn+1x) ≥

1 − tkn+1x + tknx

+
wii.

Using that limn→+∞ tkn+1x − tknx = 0, we conclude that η ≥

wii, contradicting the original assumption on the self-influencing
weights wii. �
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