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h i g h l i g h t s

• Unraveling the bifurcation structure of a single-phase H-bridge inverter.
• Demonstration of regular structures formed by persistence border-collision curves.
• Detection of qualitatively different regions inside the fixed point stability domain.
• Studies of the processes associated with a new route to chaos in switching systems.
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a b s t r a c t

Recent studies on a power electronic DC/AC converter (inverter) have demonstrated that such systems
may undergo a transition from regular dynamics (associated with a globally attracting fixed point of a
suitable stroboscopic map) to chaos through an irregular sequence of border-collision events. Chaotic dy-
namics of an inverter is not suitable for practical purposes. However, the parameter domain in which
the stroboscopic map has a globally attracting fixed point has generally been considered to be uniform
and suitable for practical use. In the present paper we show that this domain actually has a complicated
interior structure formed by boundaries defined by persistence border collisions. We describe a simple
approach that is based on symbolic dynamics and makes it possible to detect such boundaries numer-
ically. Using this approach we describe several regions in the parameter space leading to qualitatively
different output signals of the inverter although all associated with globally attracting fixed points of the
corresponding stroboscopic map.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Power electronic inverter systems (DC/AC converters) provide
AC voltage or current of specified amplitude and frequency from a
DC source. By virtue of their high efficiency and relatively lowcosts,
inverters have achieved widespread application in modern power
engineering. Standard examples of devices that include inverters
are uninterruptible power supplies (UPS), active filters, flexible
AC transmission systems (FACTS), voltage compensators, and so
on [1]. Moreover, in the last few years the interest in inverters has
been continuously increasing because of their use in solar panel
systems and in the power supply systems of electric and hybrid
cars [2–4].
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The functioning of inverter systems is characterized by a
cyclic switching of the circuit topology. This switching process is
controlled throughpulse-widthmodulation in accordancewith the
desired output wave form [1]. Feedback regulation of the pulse-
width modulation provides a way to correct deviations from the
desired wave form and, by operating at high switching rates, to
keep the output ripple at an acceptable level even with relatively
small filter components.

Like other power electronic systems with switching control,
inverter systems require us to work with piecewise-smooth
models for their adequate description [5,6]. Such models are
characterized by a division of their phase space into several regions
in which the dynamic behavior is governed by different smooth
systems. These regions are separated from each other by so-
called switching manifolds. Hence, in addition to the bifurcations
known for smooth systems, piecewise-smooth systems display
a variety of border-collision related phenomena occurring when
an invariant set (such as, for example, a cycle) collides with a
switching manifold.
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In relation to the present work, it is necessary to clearly
distinguish between two different types of border collisions with
widely different outcomes. If the collision causes a change in the
topological structure of the phase space it is commonly referred to
as a border-collision bifurcation. As an example one can consider
the transition from a stable fixed point to a stable n-cycle, n >
2, or to a chaotic attractor. However, it is also possible that the
invariant set after the border collision is of the same kind as
before. For example, if there are stable fixed points before and after
the border collision, then neither the stability nor the periodicity
changes but only the location of the fixed point with respect
to the switching manifold is affected. In such cases we cannot
speak about bifurcations in a strong sense, because a bifurcation
is commonly defined as a change in the topological structure of
the phase space, which does not occur in the considered situation.
Therefore, following the classification introduced by Feigin [7,8],
we refer to this type of collision as a persistence border collision. An
overview of these, and other, border-collision related phenomena
may be found in the book by di Bernardo et al. [9].

The normal operational regime for the considered class of
converter systems is the regimeof stable period-1 dynamics as pre-
scribed by the (sinusoidal) reference signal. However, as parame-
ters are varied, this period-1 mode may become unstable and the
system starts to show oscillations in the form of a small-amplitude
high-frequency quasiperiodic [10] or chaotic [11,12] ripple mod-
ulated by the low-frequency external reference signal. The on-
set of chaotic oscillations in a H-bridge inverter with a resistive
and inductive load was reported in our recent publication [12].
That article discussed the transition from a stable period-1 mode
to deterministic chaos through an irregular cascade of border-
collision events.More precisely, the transitional states involved se-
quences of persistence border collisions interrupted by occasional
border-collision bifurcations. In addition, we found that similar
high-frequency oscillationsmodulated by the low-frequency refer-
ence signal may appear inside the region of stability for a period-1
mode. Fromapractical point of view, although these oscillations do
not influence the period of the overall signal, theymay significantly
worsen the harmonic distortion of the load current. This leads to
the questions: what is the role of the persistence border collisions
in the organization of the internal structure of the stability region
for period-1 dynamics and how to determine the boundary of the
normal operational regime?

In the present paper we consider the same inverter as in
[11,12], but the focus of our study is now on that part of the
parameter space where the stable period-1 mode is globally
attracting. This region of parameter space is generally assumed
to be fairly uniform and without significant internal structure. In
reality, however, the region contains an interesting and rather
complicated structure formed by persistence border-collision
curves, a structure that, to the best of our knowledge, has never
been reported before. To detect this structure we developed
a simple numerical approach that allows us to locate border
collisions of any type, including persistence collisions. Since
neither the stability nor the periodicity of the operational mode
changes in the persistence border collisions, the approach has to
be based on symbolic dynamics. Using this approach we outline
the interior structure of the domain in the parameter space where
the fixedpoint is globally attracting. In particular,we showhow the
quality of the output signal of the inverter may change (preserving
the required period of the sinusoidal reference signal) from
being almost perfect in certain regions to becoming practically
unacceptable in others. In this connection it is interesting to note
that the structure of the border-collision network depends on
whether the inverter operates with odd or even values of the so-
called frequency modulation ratiom that measures the number of
switching cycles during one period of the reference cycle. Finally,

we relate the large scale oscillatory variation in the transition from
regular to chaotic dynamics to the characteristic structure of the
network of border-collisions curves.

The purpose of the present study is twofold: From the
theoretical point of view, we want to report how persistence
border collisions may form structures in 2D parameter space.
The present paper does not present any general results or
rigorous proofs, but only reports a few examples of the observed
structures and describes their regularities. Although we have
already observed similar structures in other systems, the task to
investigate the conditions leading to their appearance is postponed
for future work. On the other side, from the practical point of view,
we want to show in what part of the parameter region the quality
of the output signal is acceptable and in which part it is not. Due to
its simplicity, the numerical approach reported in this work can be
appliedwithoutmodifications to a broad class of DC/AC and AC/DC
converter systems.

2. Description of the system

2.1. PWM H-bridge single-phase inverter

Fig. 1(a) shows a schematic diagram of the considered pulse-
width modulated H-bridge single-phase inverter and Fig. 1(b)
illustrates the generation of the switching signal used to control
the four switches S1–S4.

The four switches of the bridge structure operate in pairs such
that S1 and S4 are closed when S2 and S3 are open, and vice
versa. When S1, S4 are on and S2, S3 are off, a positive voltage
E0 is applied to the load, and when S1, S4 are off and S2, S3 are
on, this voltage is reversed. The switches are controlled by the
sinusoidal PWM modulator through a feedback mechanism. In
order to generate the switching signals to the switches S1, S4
and S2, S3, the corrector amplifier DA2 first determines the error
signal ξ(t) = α(Vref(t) − Vcs(t)) that measures the difference
between the reference sinusoidal voltage Vref(t) = Vm ·cos(2π t/T )
and the output voltage Vcs(t) = βi(t) of the current sensor CS.
Here, α is the corrector gain factor and β is referred to as the
current sensor sensitivity; Vm and T = ma are the amplitude
and the period of the reference signal, respectively. The parameter
a denotes the ramp period (the period of the clock signal Vclock)
and, as previously introduced, m is referred to as the frequency
modulation ratio, i.e., the number of clock cycles during the
period T of the reference signal. The frequency modulation ratiom
obviously plays an important role in determining the accuracywith
which the reference signal can be reproduced by the load current.

As illustrated in Fig. 1(b), the sample-and-hold unit S/H reads
the error signal ξ(t) at every clock time t = ka, k = 0, 1, 2 . . . , and
maintains it for the following switching period. This produces the
control signal Vcon(t). Finally the comparator DA1 compares this
control signal from the sample-and-hold unit with a periodic ramp
function Vramp(t) in order to generate the switching signals to the
switches S1, S4, and S2, S3. As long as Vcon(t) > Vramp(t), switches
S1, S4 are on and S2, S3 are off, while S1, S4 are off and S2, S3 on for
Vcon(t) 6 Vramp(t). This type of modulation is also known as pulse-
width modulation of the first kind.

The ramp function Vramp(t) varies from −V0 to +V0 and in
synchrony with the clock signal. If Vcon(t) > +V0 or Vcon(t) 6 −V0
the modulator is saturated. In the first case, i.e., if Vcon(t) > +V0,
the duration of the positive pulse is equal to the ramp period a (see
the time intervals 2a < t 6 3a and 3a < t 6 4a in Fig. 1(b)), and
in the second case (i.e., Vcon(t) 6 −V0) it is equal to zero as can be
observed in Fig. 1(b) during the time intervals 7a < t 6 8a and
8a < t 6 9a.
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