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h i g h l i g h t s

• We described three and four wave instabilities due to resonant interactions.
• Algorithm for simulation of weakly nonlinear surface waves is presented.
• Numerical scheme conserves Hamiltonian of the system.
• We discussed and simulated instability of standing and propagating waves.
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a b s t r a c t

We performed full-scale numerical simulation of instability of weakly nonlinear waves on the surface
of deep fluid. We show that the instability development leads to chaotization and formation of wave
turbulence.

Instability of both propagating and standing waves was studied. We separately studied pure capillary
wave, that was unstable due to three-wave interactions and pure gravity waves, that were unstable due
to four-wave interactions. The theoretical description of instabilities in all cases is included in the article.
The numerical algorithm used in these and many other previous simulations performed by the authors is
described in detail.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Stationary propagating waves on the surface of deep, heavy
ideal fluid have been known since the middle of the nineteenth
century. Stokes (see, for instance [1]) in 1847 found the solution
of the Euler equation in the form of trigonometric series. For the
shape of surface η(x, t), he obtained:

η(x, t) = a

cos(kx − ωt)+

1
2
µ cos{2(kx − ωt)}

+
3
8
µ2 cos{3(kx − ωt)} + · · ·


. (1)
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Here we introduced steepness µ and frequency ω

µ = ka, ω =

gk


1 +

1
2
µ2

+
1
8
µ4

+ · · ·


. (2)

Stokes found two algorithms for the calculation of all terms
in series (1) and (2) (see Sretenskii [2]). Convergence of these
series was proven by Nekrasov [3,4] in 1921. Another proof was
found by Levi-Civita [5]. Recently shapes of different Stokes waves
were obtained numerically with high precision [6,7], their analytic
structure was revealed [7] and explained [8].

It has been known since 1965 [9] that stationary waves on
the surface of deep water are unstable. The theory of instability
[10–13] was developed for waves of small amplitude within the
limit µ → 0. A history of this question is described in the ar-
ticle [14]. Recent advances can be found in [15]. In the present
paper, we study the instability of stationary waves numerically
through the direct solution of the Euler equationwhich describes a
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potential flow of ideal fluid with free surface. This approach has
two important advantages. Firstly, through numerical simulation
we can study waves with finite amplitudes. While this paper fo-
cuses only on cases of small amplitude, such an advantage will be
crucial for other applications, e.g. wave breaking simulation. Sec-
ondly, the use of numerical simulation allows us to study not only
linear, but also nonlinear stages of instability development. Even in
integrable systems like theNLSE, analytical study of themonochro-
matic wave is a very nonlinear problem and can be solved only
by methods of algebraic geometry [16]. In more realistic models,
development of a nonlinear theory of modulational instability for
waves is a hopeless problem. In the long run, we have to expect
that instability will lead to the formation of a stochastic wave field
described by a kinetic equation for squared wave amplitudes and
formation of Kolmogorov–Zakharov (KZ) spectra, governed by the
energy flux in high wave numbers [17].

The article is organized as follows. Sections 2 and 3 are devoted
to analytical theory of stability of weakly nonlinear stationary
waves. To develop this theory, we use Hamiltonian formalism as
this approach is the most compact and suitable. We start with
presenting the Euler equation of ideal fluid with free surface in
the Hamiltonian form. Surface tension is also included in the
Hamiltonian. In the presence of surface tension, the dispersion
relation is:

ωk =


gk + σk3,

where σ—the surface tension coefficient (here and further we
consider fluid of unit density).

Wave vectors of small-amplitude stationary waves are solu-
tions of the equation

ωk = ck. (3)

This equation has two solutions (we omit trivial solution k = 0):

k1,2 =
c2 ±


c4 − 4gσ
2σ

, (4)

if c > c0, where c0 = (4gσ)1/4. For water, c0 ≃ 23 cm/s. In a
generic case c ∼ c0 stationary waves comprise a complicated four-
parameter family. However, in the limiting case c ≫ c0 one can
split it into two periodic families of ‘‘pure gravitational’’ and ‘‘pure
capillary’’ waves.

The Stokes wave is ‘‘pure gravitational’’. Now, with k1 = g/c2
capillary effects can be neglected. In the ‘‘pure capillary’’ case k2 =

c2/σ , effects of gravity can be ignored. All stationary waves on
the surface of deep fluid are unstable. However, the instabilities
of short capillary waves and long gravity waves are significantly
different and described by different ‘‘efficient Hamiltonians’’. The
case of ‘‘pure capillary’’ waves is the simplest. The instability can
be studied if Hamiltonian contains only quadratic and cubic terms.
This is the subject of Section 2. A situation is more complicated
for gravitational waves. In this case, fourth order terms must be
included in the Hamiltonian. Then, one has to exclude the cubic
terms through a proper conformal transformation. As a result, we
get so-called ‘‘Zakharov equation’’ [13]. In the framework of this
equation, the problem of the Stokes wave stability can be solved
exactly. This is the subject of Section 3.

In Section 4, we give a detailed description of the numerical
codewhichweused for the solution of theHamiltonian Euler equa-
tion. This codewas used inmany papers butwas never described in
detail [18–25].We should stress that in our numerical experiments
we worked with the Euler equation written in ‘‘natural variables’’.
These equations are not as good for the direct analytical study as
they are good for the implementation of numerical method. The
structure of nonlinear parts of the Hamiltonian in ‘‘natural vari-
ables’’ is relatively simple, and numerical implementation through
standard Fast Fourier Transform (FFT) is quite feasible.

In Section 5 we present our results on the modeling of capillary
wave instability. We show that an initial stage of instability is
described pretty well by the linear analytical theory. Further
development of instability leads to the appearance of ‘‘secondary
instabilities’’ and a tendency toward the formation of a chaotic
wave field, which should be described by statistical methods.

In Section 6, we study the instability of the Stokes wave. We
show that this instability is mostly ‘‘modulational’’. In other words,
the wave remains quasi-monochromatic for a long time after the
development of the instability.

Finally, in Section 7we present first results on the development
of the standingwave instability.We show that this instability leads
to fast isotropization of thewave field. Thismechanism can be used
in experiments for generation of an isotropic wave field.

2. Theory of decay instability

In this section, we develop the simplest version of the theory
of stationary wave instability. This simple theory is applicable
if triple-wave nonlinear processes governed by the resonant
conditions

ωk = ωk1 + ωk2 , (5)
k = k1 + k2

are permitted. Let us briefly describe how the theory of surface
waves can be embedded into the general Hamiltonian theory of
nonlinear waves, before we use conditions (5).

Suppose that ideal incompressible fluid fills the space −∞ <
z < η(r, t), here r = (x, y)—two dimensional vector. A flow is
potential v = ∇Φ , hence hydrodynamical potentialΦ satisfies the
Laplace equation

∇
2Φ = 0. (6)

Let us defineψ = Φ|z=η and impose a natural boundary condi-
tionΦz → 0 at z → −∞. It is known [10] that η(r, t) and ψ(r, t)
are canonically conjugated variables satisfying evolutionary equa-
tions

∂η

∂t
=
δH
δψ
,

∂ψ

∂t
= −

δH
δη
. (7)

Here H = T + U—total energy of the fluid, consisting of kinetic
energy

T =
1
2


d2r

 η

−∞

(∇Φ)2dz, (8)

and potential energy

U =
g
2


η2d2r + σ


(

1 + (∇η)2 − 1)d2r. (9)

TheHamiltonianH in terms ofη andψ is given by the infinite series

H = H0 + H1 + H2 + · · · . (10)

Here

H0 =
1
2

 
ψ k̂ψ + gη2 + σ(∇η)2


d2r, (11)

here k̂ψ =


−∇2ψ,

H1 =
1
2


η{|∇ψ |

2
− (k̂ψ)2}d2r, (12)

H2 =
1
2


η(k̂ψ)[k̂(ηk̂ψ)+ η∇2ψ]d2r +

1
2
σ


(∇η2)2d2r. (13)

Thereafter, we will neglect the last term in (13).
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