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h i g h l i g h t s

• We introduce a hierarchy of models for interacting preys–predators populations.
• We discuss on numerical grounds the formation of remarkable patterns.
• We analyze a model of the hierarchy and prove global existence of solutions.
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a b s t r a c t

We discuss the modeling of interacting populations through pursuit-evasion – or attraction–repulsion –
principles : preys try to escape chasers, chasers are attracted by the presence of preys. We construct a
hierarchy of models, ranging fromODEs systemswith finite numbers of individuals of each population, to
hydrodynamic systems. First-order macroscopic models look like generalized ‘‘two-species Keller–Segel
equations’’. But, due to cross-interactions, we can show that the system does not exhibit any blow up
phenomena in finite time. We also obtain second-order models, that have the form of systems of balance
laws, derived from kinetic models. We bring out a few remarkable features of the models based either on
mathematical analysis or numerical simulations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The formation of space–time heterogeneous patterns is a
universal feature of living organisms. Many attempts can be found
to model the behavioral mechanisms that lead to the observed
self-organization of interacting populations. We refer the reader
to [1] for a detailed introduction to such phenomena, in the specific
case of fish schools, and to the review in [2]. The question can
be rephrased as to describe the information exchanges between
self-propelled individuals: the individuals can use the information
contained in a certain subdomain of their environment, so that,
according to a set of basic rules, themotion of thewhole population
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organizes with a remarkable pattern. This phenomenon is referred
to as ‘‘flocking’’ or ‘‘swarming’’. The mathematical modeling
of these natural behaviors has motivated an intense research
activity, after the seminal works of Vicsek et al. [3]. Flocking can
be represented by hydrodynamical models [4] as well as many
particles systems, where the interaction between individuals is
embodied into some potential [5,6]. This potential encodes
how the motion of an individual adapts to the others, e.g. by
adjusting the relative velocities. The advantage of hydrodynamical
models is to describe the dynamic through a reduced set of
macroscopic quantities, like the concentration and bulk velocity.
Individual-based and continuum models, stochastic or not, have
led to original problems for mathematical analysis and fascinating
numerical simulations that reproduce certain features of natural
phenomena [7–11]. Hierarchies of models, à la BBGKY, have been
derived, which offer a complete picture, ranging from N-particles
systems to hydrodynamic models, through kinetic equations
where individuals are described according to the principles of
statistical physics, see [12–15]. Roughly speaking, in these models,
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the motion of the individuals is driven by the combination of
self-propulsion, friction and an attractive/repulsive potential. The
latter has the general shape of the Morse potential, describing
the tendency to pack individuals together, up to a certain
critical distance where a repelling effect dominates. Interestingly,
these models lead to a large variety of possible behaviors, with
complex selectionmechanisms driven by certain thresholds on the
parameters of the equations.

Here, we are considering a different situation since we deal
with two populations and we address the question of construct-
ing a mathematical model that produces such self-organized pat-
terns through pursuit-evasion – or attraction–repulsion – simple
principles.We shall discuss ‘‘toy-models’’, certainly (and intention-
ally) too rough to capture quantitative features; nevertheless, the
interactions of the idealized populations we are dealing with are
sufficient to bring out relevant behaviors. We neglect direct in-
teractions between individuals of the same species, the motion
is only determined by the potential created by the other popula-
tion. The dynamic can be seen as the interaction between preys
and chasers, described by their respective concentrations: preys
are repelled by the chasers while chasers are attracted by the pres-
ence of preys. The model can equally be interpreted as a simple
‘‘cops and robbers game’’ (we warn the reader not to confuse with
a more complex problem referred to with this name in computer
science and graph theory). We refer the reader to [16,17] for sim-
ilar attempts, and more recently to [18,9,19], but with a differ-
ent definition of the attraction–repulsion mechanisms. Our work
is rather complementary to [10,11] where the interested reader
will find further details on the modeling issues and very impres-
sive simulations. The modeling also echoes to certain applications
in robotics. In this work, the potential is obtained through convo-
lution formulae with the densities. A possible model for designing
the interaction potential can be obtained by mimicking the repul-
sive/attractive effects used when dealing with charged or gravita-
tional particles respectively. The latter principle has been adapted
from astrophysics, see [20], to population dynamics and it leads
to remarkable aggregation phenomena, typical of the behavior of
certain populations of bacteria, see [21]. At first sight, (one of) our
hydrodynamic models share(s) the structure of the Keller–Segel
system. This system has motivated a huge amount of mathemati-
calworks because it exhibits interesting singularity formations:we
refer the reader for instance to [22–24] for the analysis of such phe-
nomena. In the classical Keller–Segel model the individuals (cells,
bacteria) move according to the gradient of the concentration of a
substance they emit themselves: the higher the concentration of
individuals, the higher the production of the attracting chemical
signal. This principle is the basis of chemotaxis. This aggregation
process is counter-balanced by spacial diffusion: the two effects
compete to determine whether or not the solution blows up in fi-
nite time. Thresholds on the initial mass can be discussed accord-
ingly. At least in dimension 2, the situation is quitewell understood
now. The Keller–Segel system can be obtained through hydrody-
namic regimes from a kinetic model for chemotaxis, based on run
and tumbling responses to the chemoattractant: this approach is
proposed and analyzed in [25] and [26, Section 5.7]. Several mod-
ifications of the model have been introduced in order to prevent
the overcrowding: concentration-dependent chemotactic sensitiv-
ity and diffusion coefficient, reaction terms, cross-diffusion effects,
etc. [27,28] We refer the reader to the overviews on chemotaxis
models in [29–31] and [26, Chap. 5] for further details and results.
It is also worth mentioning that similar ideas are also at the basis
of PDEs systems proposed to model criminal behavior [32]: these
models are intended to reproduce the formation of ‘‘hotspots’’ of
criminal activity.

The paper is organized as follows. We start by introducing
first-order models: the concentrations of preys and chasers obey

transport equations, the velocities of which are gradients of
potentials satisfying Poisson equations. The right hand side of
the Poisson equation is proportional to the concentration of
the opposite population, the sign depending whether the effect
is attractive or repulsive. Coming back to a single species, we
obtain a diffusionless Keller–Segel equation, as analyzed in [33,34],
but we shall see that in the present context the crossed effects
between preys and chasers prevent the formation of blow
up. We discuss N-particles versions of the model. Within this
interpretation, it turns out that it might be relevant to replace
the Poisson kernel by convolution kernels that take into account
further distance effects. Next, we turn to second-order models
where the presence of preys and chasers is interpreted as creating
attractive and repulsive forces. Hence, we obtain individual-based
models that have the form of non-linear ODEs systems derived
from the standard principles of classical mechanics. We propose
a kinetic version of such models. Finally, based on asymptotic
argumentswe set up a hierarchy of hydrodynamic-like systems for
the interacting populations, see e.g. [12–14,35,33,36] for similar
arguments in different contexts. Section 3 is concerned with
numerical simulations. We investigate the behavior of individual-
based and continuum models in 1D and 2D, discussing the role of
the parameters entering into the models. The simulations exhibit
an interesting variety of behaviors, that could be valuable sources
for further mathematical analysis. Eventually, Section 4 is devoted
to the analysis of the first-order continuummodel. In contrast with
the single species problem analyzed in [33,37,34], concentration in
finite time cannot occur as far as initial data are bounded functions.
Therefore, we establish the existence and uniqueness of bounded
weak solutions, for a wide variety of interaction kernels.

2. A hierarchy of models for pursuit-evasion dynamics

In what follows we will discuss models based either on ODEs
or PDEs. The two viewpoints are intimately connected, as a
consequence of the following basic remark about the transport
equation
∂tρ + ∇x · (ρu) = 0. (1)
We start by assuming that u : R × RN

→ RN is smooth enough, so
that characteristics curves are well defined by the ODE
d
dt

X(t; s, x) = u(t, X(t; s, x)), X(s; s, x) = x.

Namely X(t; s, x) is the position at time t of a particle driven by
the velocity field u, knowing that it starts from position x at time
s. Our discussion will use the following claim (for the sake of self-
containedness the proof is detailed in Appendix A, see also [38]).

Proposition 2.1. (i) The measure
I

i=1 δ(x = X(t; 0, x0,i)) is a
solution of (1) associated to the initial datum

I
i=1 δ(x = x0,i).

(ii) For ρinit ∈ Lp(RN), 1 ≤ p ≤ ∞, the unique solution of (1) having
ρinit as initial datum is given by

ρ(t, x) = ρinit(X(0; t, x))

× exp


−

 t

0
(∇x · u)(s, X(s; t, x))ds


.

The solution lies in C0([0, ∞); Lp(RN)) when p is finite, or in
C0([0, ∞); L∞(RN) − weak − ⋆) otherwise.

We shall deal with nonlinear models where, roughly speaking,
the velocity u depends on the concentration ρ through non-local
definitions. It leads tomathematical difficulties since the regularity
necessary to define properly the characteristic curves is not
directly guaranteed in this context (see for instance [37,33,34] for
the analysis of a similar problem). Nevertheless it is worth bearing
in mind Proposition 2.1 to make connection, at least formally,
between individual-based modeling and PDEs description.
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