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h i g h l i g h t s

• Derivation of generalised Klein–Gordon equations is presented in the context of deep water waves.
• Accuracy of this approximate model is studied using analytical and numerical methods.
• For travelling periodic waves the model is shown to be more accurate than the cubic Zakharov equations.
• Dynamics of periodic and localised wave trains is studied numerically.
• It is shown numerically that this model can develop Riemann-type wave breaking phenomenon.
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a b s t r a c t

In this study, we discuss an approximate set of equations describing water wave propagating in deep
water. These generalised Klein–Gordon (gKG) equations possess a variational formulation, as well
as a canonical Hamiltonian and multi-symplectic structures. Periodic travelling wave solutions are
constructed numerically to high accuracy and compared to a seventh-order Stokes expansion of the full
Euler equations. Then, we propose an efficient pseudo-spectral discretisation, which allows to assess the
stability of travelling waves and localised wave packets.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The water wave problem counts today more than 200 years of
history (see A. Craik (2004), [1]). Despite some recent progress
[2–5], the complete formulation remains a mathematical difficult
problem and a stiff numerical one. Consequently, researchers have
always been looking for specific physical regimes which would
allow to simplify the governing equations [6,7]. There are twomain
regimes which attracted a particular attention from the research
community: shallow and deep water approximations [8,9].

If λ is a characteristic wavelength and h is an average water
depth, the shallow water approximation consists to assume that
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h/λ ≪ 1 or in other words, the water depth is much smaller com-
pared to the typical wavelength. This regime is relevant in coastal
engineering problems [10–12]. In open ocean only tsunami and
tidal waves are in this regime [13,14].

The deep water approximation is exactly the opposite case
when h/λ ≫ 1, i.e. the water depth is much bigger than the typ-
ical wavelength. In practice, some deep water effects (defocusing
type of the NLS equation) can already manifest when kh = 2πh/
λ & 1.36. This regime is relevant for most wave evolution prob-
lems in open oceans [15]. In the present paper, we present a
detailed derivation of what we call a ‘‘generalised Klein–Gordon
(gKG)’’ equations using a variational principle [16]. To our knowl-
edge, it is a novel model in deep water regime. By making compar-
isons with the full Euler equations, we show that these equations
can, on somepeculiar features, outperform the celebrated cubic Za-
kharov (cZ) equations [17,18]. Recently, a novel so-called compact
Dyachenko–Zakharov equation was proposed [19] which describes
the evolution of the complex wave envelope amplitude in deep
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Fig. 1. Definition sketch of the fluid domain.

waters. This promising equation results from a sequence of thor-
oughly chosen canonical transformations, making the direct com-
parisons rather tricky.

The gKG equations have multiple variational structures. First of
all, they appear as Euler–Lagrange equations of an approximate
Lagrangian that possesses also a canonical Hamiltonian formula-
tion [16]. In this study, we show that the gKG system can be re-
cast into the multi-symplectic form [20,21] as well. The main idea
behind this formulation is to treat the time and space variables
on equal footing [22] while, for instance in Hamiltonian systems,
the time variable is privileged with respect to the space. Based on
this special structure, numerous multi-symplectic schemes have
been proposed for multi-symplectic PDEs including the celebrated
KdV and NLS equations [20,23–25]. These schemes are specifically
designed to preserve exactly the discrete multi-symplectic form.
However, these schemes turn out to be fully implicit, thence ad-
vantageous only for long time simulations using large time steps.
Since in the present study we focus on the mid-range dynamics,
we opt for a pseudo-spectral method which can insure a high ac-
curacy with an explicit time discretisation [26,4,27,28]. Since the
periodic and localised solutions play an important role in the non-
linear wave dynamics [29], we use the numerical method to study
the behaviour of these solutions.

The present paper is organised as follows. In Section 2 we
briefly present the essence of the deep water approximation and
derive the gKG equations. In Section 3, we discuss some structural
properties of the model and, in Section 4.1, we compare it to the
classical cubic Zakharov (cZ) equations. Periodic travelling wave
solutions are computed in Section 4. The numerical method for the
gKG initial value problem is described in Section 5. Somenumerical
tests are presented in Section 6. Finally, the last Section 7 contains
main conclusions of this study.

2. Mathematical modelling

Consider an ideal incompressible fluid of constant density ρ.
The vertical projection of the fluid domain Ω is a subset ofR2. The
horizontal independent variables are denoted by x = (x1, x2) and
the upward vertical one by y. The origin of the Cartesian coordinate
system is chosen such that the surface y = 0 corresponds to the
still water level. The fluid is bounded above by an impermeable
free surface at y = η(x, t). We assume that the fluid is unbounded
below. This assumption constitutes the so-called deep water
limiting case which is valid if the typical wavelength is much
smaller than the average water depth. The sketch of the physical
domain is shown in Fig. 1.

2.1. Fundamental equations

Assuming that the flow is incompressible and irrotational, the
governing equations of the classical water wave problem over an
infinite depth are the following [30,9,6,7]:

∇
2φ + ∂ 2

y φ = 0 − ∞ 6 y 6 η(x, t), (2.1)

∂tη + (∇φ)·(∇η) − ∂y φ = 0 y = η(x, t), (2.2)

∂tφ +
1
2

(∇φ)2 +
1
2

(∂yφ)2 + g η = 0 y = η(x, t), (2.3)

|gradφ| → 0 y → −∞, (2.4)
with φ being the velocity potential (i.e., u = ∇φ, v = ∂yφ), g the
acceleration due to gravity and where ∇ = (∂x1 , ∂x2) denotes the
gradient operator in horizontal plane.

The incompressibility condition leads to the Laplace equation
for φ. The main difficulty of the water wave problem lies on
the nonlinear free boundary conditions and that the free surface
shape is unknown. Eq. (2.2) expresses the free-surface kinematic
condition, while the dynamic condition (2.3) expresses the free
surface isobarity. Finally, the last condition (2.4) means that the
velocity field decays to zero as y → −∞.

The water wave problem possesses several variational struc-
tures [31–34]. In the present study, wewill focusmainly on the La-
grangian variational formalism, but not exclusively. Surface gravity
wave equations (2.1)–(2.3) can be derived as Euler–Lagrange equa-
tions of a functional proposed by Luke [31]

L =

 t2

t1


Ω

L ρ d2x dt,

L = −

 η

−∞


g y + ∂t φ +

1
2

(∇ φ)2 +
1
2

(∂y φ)2


dy. (2.5)

In a recent study,Clamond andDutykh [16] proposed to use Luke’s
Lagrangian (2.5) in the following relaxed form

L = (ηt + µ̃·∇η − ν̃) φ̃ −
1
2
g η2

+

 η

−∞


µ·u −

1
2
u2

+ ν v −
1
2

v2
+ (∇·µ + νy) φ


d y, (2.6)

where {u, v,µ, ν} are the horizontal velocities, the vertical ve-
locity and the associated Lagrange multipliers, respectively. The
additional variables {µ, ν} (Lagrange multipliers) are called
pseudo-velocities. The over ‘tildes’ denote a quantity computed at
the free surface y = η(x, t).

While the original Lagrangian (2.5) incorporates only two vari-
ables (η and φ), the relaxed Lagrangian density (2.6) involves six
variables {η, φ, u, v,µ, ν}. These additional degrees of freedom
provide us with more flexibility in constructing various approx-
imations. For more details, explanations and examples we refer
to [16].
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