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h i g h l i g h t s

• We derive the extended Green–Naghdi (GN) equations which incorporate the higher-order dispersion.
• We show that the extended GN equations have the same Hamiltonian structure as that of the GN equation.
• We prove that Zakharov’s Hamiltonian equations of motion are equivalent to the extended GN equations.
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a b s t r a c t

A novel method is developed for extending the Green–Naghdi (GN) shallow-water model equation to
the general system which incorporates the arbitrary higher-order dispersive effects. As an illustrative
example, we derive amodel equationwhich is accurate to the fourth power of the shallowness parameter
while preserving the full nonlinearity of the GN equation, and obtain its solitary wave solutions bymeans
of a singular perturbation analysis. We show that the extended GN equations have the same Hamiltonian
structure as that of the GN equation. We also demonstrate that Zakharov’s Hamiltonian formulation of
surface gravity waves is equivalent to that of the extended GN system by rewriting the former system in
terms of the momentum density instead of the velocity potential at the free surface.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Green–Naghdi (GN) equation which is also known as the
Serre or Su–Gardner equations models the fully nonlinear and
weakly dispersive surface gravity waves on fluid of finite depth.
See Serre [1], Su and Gardner [2] and Green and Naghdi [3].
Although the GN equation approximates the Euler equations for
the irrotational flows, it exhibits several remarkable features. In
particular, it has a Hamiltonian formulation which provides a
unified framework in exploiting the mathematical structure of
various model equations such as the Boussinesq, Korteweg–de
Vries (KdV) and Camassa–Holm (CH) equations (Camassa and
Holm [4] and Camassa et al. [5]). A large number of works
have been devoted to the studies of the GN equation from both
analytical and numerical points of view. A review article by
Barthélemy [6] describes the derivation of the GN equation as
well as a method for improving the dispersive effect. Furthermore,
the improved model equations are tested against experiments.
The recent article by Bonneton et al. [7] reviews the high-
order numerical methods for the GN equation and the numerical
results in comparison with breaking random wave propagation
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experiments. The following two monographs are concerned with
the derivation and mathematical properties of the GN and other
water wave equations: Constantin [8] provides an overview
of some main results and recent developments in nonlinear
water waves including breaking waves and tsunamis. Lannes [9]
addresses the derivation of various asymptotic model equations
and their mathematical analysis which is mainly devoted to the
well-posedness of the model equations.

The GN equation incorporates the dispersion of order δ2, where
δ = h0/l is the shallowness parameter (h0: mean depth of the
fluid, l: typical length scale of thewave). To improve the dispersion
characteristics, various attempts have beenmade to extend the GN
equation. Among them, the model equations have been derived
which include the dispersive terms of order δ4 (Kirby [10], Madsen
and Schäffer [11,12] andGobbi et al. [13]). Numerical computations
have been performed for these equations to examine the wave
profiles and the amplitude–velocity relations as well as the effect
of dispersion on the wave characteristics. Note, however that
whether the proposed higher-order dispersive model equations
permit theHamiltonian formulations has not been discussed so far.
In this paper, we extend the GN equation which is accurate to the
dispersive terms of order δ2n while preserving the full nonlinearity,
wheren is an arbitrary positive integer. The casen = 1 corresponds
to the GN equation. We show that the extended model equations
have the same Hamiltonian structure as that of the GN equation.
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We consider the two-dimensional irrotational flow of an in-
compressible and inviscid fluid of uniform depth. The effect of sur-
face tension is neglected for the sake of simplicity. The governing
equation of the water wave problem is given in terms of the di-
mensionless variables by

δ2φxx + φyy = 0, −∞ < x < ∞, − 1 < y < ϵη, (1.1)

ηt + ϵφxηx =
1
δ2
φy, y = ϵη, (1.2)

φt +
ϵ

2δ2
(δ2φ2

x + φ2
y )+ η = 0, y = ϵη, (1.3)

φy = 0, y = −1. (1.4)

Here, φ = φ(x, y, t) is the velocity potential, η = η(x, t) is the
profile of the free surface, and the subscripts x, y, and t appended to
φ andη denote partial differentiations. The dimensional quantities,
with tildes, are related to the corresponding dimensionless ones
by the relations x̃ = lx, ỹ = h0y, t̃ = (l/c0)t, η̃ = aη and φ̃ =

(gla/c0)φ, where a and c0 are characteristic scales of the amplitude
and velocity of thewave, respectively, and g is the acceleration due
to the gravity. Note that c0 =

√
gh0 is the longwave phase velocity.

In the problem under consideration, one can choose the two
independent dimensionless parameters, ϵ = a/h0 and δ = h0/l.
The former parameter characterizes themagnitude of nonlinearity
whereas the latter characterizes the dispersion or shallowness.

In Section 2, we provide a recipe for deriving the model
equations. See, for instance Matsuno [14] as for an analogous
method which develops a procedure for obtaining the full
dispersion model equations of the water wave problem. After
completing the construction of the extended GN system, we derive
as an example a model equation which is accurate to order δ4.
In Section 3, we show that the extended GN equations can be
formulated in a Hamiltonian form by employing an appropriate
Lie–Poisson bracket. At the same time, we demonstrate that the
extended equations are equivalent to Zakharov’s equations of
motion for surface gravity waves. In Section 4, we briefly address
the solitary wave solutions of the δ4 GNmodel. Finally, Section 5 is
devoted to conclusion.

2. Derivation of the extended Green–Naghdi equations

2.1. The extended GN system

We first introduce themean horizontal velocity component ū =

ū(x, t) by

ū(x, t) =
1
h

 ϵη

−1
φx(x, y, t)dy, h = 1 + ϵη, (2.1)

where h is the total depth of the fluid. The horizontal and vertical
components of the surface velocity u and v are given respectively
by

u(x, t) = φx(x, y, t)|y=ϵη, (2.2)

v(x, t) = φy(x, y, t)|y=ϵη. (2.3)

Multiplying (2.1) by h and differentiating the resultant expres-
sion by x and then using (1.1), (1.4), (2.2) and (2.3), we obtain the
relation (hū)x = ϵηxu − v/δ2, or since ϵηx = hx

v = δ2{−(hū)x + hxu}. (2.4)

Substitution of (2.4) into (1.2) yields the evolution equation for h:

ht + ϵ(hū)x = 0. (2.5)

An advantage of choosing h and ū as the dependent variables is that
(2.5) becomes an exact equation without any approximation.

Next, we differentiate (2.2) and (2.3) by x and t to obtain the
relations

ux = φxx + ϵφxyηx, ut = φxt + ϵφxyηt , (2.6)

vx = φxy + ϵφyyηx, vt = φyt + ϵφyyηt , (2.7)

where the derivatives φxx, φxy, φyy, φxt and φyt are evaluated at
y = ϵη. Similarly,
φt |y=ϵη


x = φxt + ϵφytηx. (2.8)

Eliminating φxt and φyt with use of (2.6) and (2.7), (2.8) becomes
φt |y=ϵη


x = ut + vthx − vxht . (2.9)

If we differentiate (1.3) by x, insert (2.4) and (2.9) in the resultant
expression and use (2.5), we obtain the evolution equation for u:

ut + vthx + ϵuux + ϵhxuvx + ηx = 0. (2.10)

Using (2.5), Eq. (2.10) can be recast into the form

[h(u + vhx)]t + ϵ[h(u + vhx)ū]x + ϵ[hv(2hxūx + hūxx)

+ h(u − ū)(ux + vxhx)] + hηx = 0. (2.11)

The system of Eqs. (2.5) and (2.10) (or (2.11)) is equivalent
to the basic Euler system (1.1)–(1.4). To obtain the extended GN
equations, one needs to express the variables u and v in (2.10) in
terms of h and ū. This is always possible as will be exemplified
below. Consequently, Eq. (2.10) can be written in the form ūt =

∞

n=0 δ
2nKn, where Kn are polynomials of h and ūnx, ūnx,t , (ūnx =

∂nū/∂xn, n = 0, 1, 2 . . .). If one retains the terms up to order δ2n,
it yields the extended GN equation which is accurate to δ2n. In
accordancewith this fact, we call the systemof Eqs. (2.5) and (2.10)
(or (2.11))with h and ūbeing the dependent variables the extended
GN system.

2.2. The δ4 model

Now, we derive the extended GN equation explicitly in the case
of n = 2 by truncating the system of Eqs. (2.5) and (2.11) at
order δ4, which we call the δ4 model. To this end, we express the
solution of the Laplace equation (1.1) subjected to the boundary
condition (1.4) in the form of an infinite series (see, for instance
Whitham [15])

φ(x, y, t) =

∞
n=0

(−1)nδ2n
(y + 1)2n

(2n)!
f2nx, f2nx =

∂2nf
∂x2n

, (2.12)

where f = f (x, t) is the velocity potential at the fluid bottom
y = −1. The expressions (2.1)–(2.3) then become

ū =

∞
n=0

(−1)nδ2n
h2n

(2n + 1)!
f(2n+1)x, (2.13)

u =

∞
n=0

(−1)nδ2n
h2n

(2n)!
f(2n+1)x, (2.14)

v =

∞
n=1

(−1)nδ2n
h2n−1

(2n − 1)!
f2nx. (2.15)

Retaining the terms of order δ4, (2.13) gives

ū = fx −
δ2

6
h2fxxx +

δ4

120
h4fxxxxx + O(δ6). (2.16)

The inverse relation in which fx is expressed in terms of h and ū
is achieved by the successive approximation starting from fx = ū.
This leads to

fx = ū +
δ2

6
h2ūxx + δ4


h2

36
(h2ūxx)xx −

h4

120
ūxxxx


+ O(δ6). (2.17)
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