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HIGHLIGHTS

We study doubly-symmetric orbits in the 1 4+ 2n-body problem.

The 1-parameter family is related with a 4-gon solution.

We compute doubly-symmetric orbits of exchange type in the five-body case.
The computed orbits belong to a 1-parameter family of time-reversible invariant tori.
The initial conditions were determined by means of solving a boundary value problem.
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We study some doubly-symmetric orbits in the planar 1+42n-body problem, that is the mass of the central
body is significantly bigger than the other 2n equal masses. The necessary and sufficient conditions for
periodicity of the orbits are discussed. We also study numerically these kinds of orbits for the case n = 2.
The system under study corresponds to one conformed by a planet and four satellites of equal mass. We
determine a 1-parameter family of time-reversible invariant tori, related with the reversing symmetries
of the equations of motion. The initial conditions of the orbits were determined by means of solving a
boundary value problem with one free parameter. The numerical solution of the boundary value problem
was obtained using the software AUTO. For the numerical analysis we have used the value of 3.5 x 10~*
as mass ratio of some satellite and the planet. In the computed solutions the satellites are in mean motion
resonance 1:1 and they librate around a relative equilibria, that is a solution where the distances between
the bodies remain constant for all time.

Coorbital motion
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1. Introduction

Among the different issues to study in the dynamics of celestial
bodies, the search for periodic orbits is one of the most attractive.
Certainly, some kind of nearly periodic motions require the
presence of a big central body to ensure stability, making possible
the corresponding motion. A well known example of this is the
coorbital motion, that is two or more bodies in a 1:1 mean motion
resonance. Some interesting orbits of coorbital type appear in
the restricted three body problem, for instance the tadpole or
horseshoe ones [1,2]. In the tadpole case the massless body orbits
around the Lagrange points L4 or Ls, as happens for the Trojan
asteroids [3] in the Sun-Jupiter system. On the other hand, in
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the horseshoe orbit the test particle follows a path such that
encompass the three Lagrange points L3, L4, and Ls. In the non-
restricted case, that is the third body has non-negligible mass, the
horseshoe shaped orbits also exist; the difference with respect
to the restricted case is that the primary less massive has its
own horseshoe shaped orbit (in a rotating frame), instead of
having a fixed position in the rotating frame. An example of this
phenomena occurs in the system conformed by Saturn, Janus and
Epimetheus [4]. There exist another kind of coorbital orbits in
the general planar three-body problem, closely related with the
horseshoe ones, the so called exchange orbits [5]. These orbits are
characterized by a periodic interchange of the semi-major axis
(exchange-a), or eccentricities (exchange-e), of the orbiting bodies.
The exchange-a orbits and the horseshoe ones in the general planar
three body problem are equivalent.

In the following we give a description of the exchange-a orbits
(cycle) in the general planar three-body problem (see Fig. 1); this
description holds for the horseshoe orbits in the same problem. A
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Fig. 1. Evolution of an exchange-a (horseshoe) orbit of the three-body problem
in the inertial frame. (a) Initial alignment with the body 3 in an inner orbit.
(b) Interchange of orbits during the encounter (3, 2). (c) Second alignment with the
body 2 in an inner orbit. (d) The encounter (2, 3) after the alignment in (c).

detailed description of exchange-e orbits can be found in [6]. Con-
sider a point P of the orbit where the configuration of the three
bodies is collinear. Close to the point P, the interaction between the
satellites is negligible and their motions are dominated by the force
exerted by the primary body, then the trajectory of each satellite
is approximately elliptic; we assume zero osculating eccentricities.
At the starting point P we consider that the semimajor axis asso-
ciated to the orbit of the particle 3 is smaller than the one corre-
sponding to 2, therefore it is said that 3 is in an inner orbit, and 2 is
in an outer one. The satellites rotate around the primary and even-
tually the distance between them decreases, and consequently the
interaction between the minor bodies is increased which leads to
a change in the orbits: 3 follows an outer orbit, and 2 an inner one,
we say that a close encounter (3, 2) between the satellites has hap-
pened (we use the label (3, 2) in order to mark that in the corre-
sponding encounter the third body passes from an inner orbit to an
outer one, and vice versa for the second body). Notice that, since
r» > rq3 before the encounter (3, 2), and ri; < ry3 after the en-
counter (3, 2), the three bodies must pass through an isosceles con-
figuration during the change, and that an alignment of the three
bodies, in some way expected, does not occur. After the change of
the orbits of the satellites, the separation between the minor bod-
ies will increase until the three bodies reach an alignment where
2 is the inner body and 3 is the outer one, and the entire above
process is repeated interchanging 2 and 3 in the discussion. This
description corresponds to what we call a cycle since, qualitatively
speaking, the orbit is conformed of cycles. In a rotating frame with
an adequate constant angular velocity the trajectory of each satel-
lite takes the form of a horseshoe, whose size depends on the minor
masses. This property is outlined in Fig. 2 for the case m,/m; = 4.

The tadpole and horseshoe orbits have been studied in the
framework of the three-body problem, in particular the restricted
model, with the aid of different mathematical tools (interested
reader may refer to [7] and references therein). In [8-11] we have
studied the horseshoe motion in the general planar three-body
problem (we avoid the massless restriction on one of the bodies
and the circular orbit prescribed for the other two, as it is assumed
in the restricted circular planar three-body problem). In the peri-
odic aspect, we have focused on the most symmetric orbits, those
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Fig. 2. Exchange-a (horseshoe) orbits (three-body problem) in a rotating frame
with constant angular velocity, for the mass ratio my/ms = 4. At the right side
are indicated the six configurations that make up Fig. 3. It was used a symbol per
configuration. The correspondence is as follows: (a) bold circle, (b); bold square,
(b), bold triangle, (c) blank circle, (d); blank square and (d), blank triangle.

related with the reversing symmetries of the equations of motion.
The symmetry leads to a simplification of the problem, in particu-
lar the reduction of the phase space. In this work we use a similar
approach.

Many different aspects of coorbiting satellites have been stud-
ied, for instance planar central configurations and relative equilib-
ria [12,13], or the dynamics of ring systems conformed by several
satellites [ 14,15]. Nevertheless, the exchange character for N-body
systems with N > 3 has not been contemplated. The main goal
of this work is to establish the existence of exchange-a orbits for
N = 5. To the best of our knowledge, this is the first time that this
phenomenon is studied in the case N = 5. In fact, our main re-
sult given in Theorem 2 holds for N = 1 + 4k, with k € N, where
we give a characterization of the most symmetric exchange-a or-
bits in the five-body problem. In particular, we establish the nec-
essary and sufficient conditions for periodicity. In some cases the
above orbits become subchoreographies, that is, solution where
all the satellites describe the same trajectory preserving the cor-
responding time intervals. An interesting property of these orbits
is that they are closely related to relative equilibria, and some spe-
cial cases correspond exactly to relative equilibria.

This paper is organized as follows. In Section 2 we give
the equations of motion and results concerning periodicity of
certain doubly-symmetric orbits which appear in the 2n 4+ 1-body
problem with 2n equal masses. We also introduce a special case
of these kinds of orbits, namely subchoreographies. In Section 3
we describe the homographic solutions, the relative equilibria and
the exchange-a orbits in the five-body problem, by analogy with
the three-body case. Later, in Section 4 we establish the type of
doubly-symmetric orbits to be studied, and use the symmetry of
these orbits to simplify the problem. In Section 5 we explain the
steps to follow in order to obtain numerically a doubly-symmetric
exchange-a orbit in the five-body problem. This orbit will be used
as “seed” of a boundary value problem with one free parameter
which we solve numerically using the software AUTO [16]. The
solution of the boundary value problem represents a 1-parameter
family of time-reversible invariant tori, and each point on it
defines a doubly-symmetric orbit which can be periodic or quasi-
periodic in the inertial frame. In the same Section we exhibit an
interesting property: the orbits within the family are in mean
motion resonance 1:1, and librate around a relative equilibria
solution of n-gon type. The numerical results are also given in that
section. We give the conclusions of this work in Section 6.

2. Equations of meotion, reversing symmetries and periodic
motions

Consider N-point particles on the plane with positive masses

m;, denoted by short asi = 1,..., N. The corresponding planar
position and velocity vectors are given by

dry .
ri = (X, Y1), vi=—, i=1,...,N,

dt
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