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h i g h l i g h t s

• Wemodel convection in a finite box of porous media where three modes are viable.
• Each box is classified into one of two classes, with one exception.
• The bifurcation behaviour for an example from each class is studied.
• The behaviour for each box is inferred from these examples.
• The results qualitatively agree with examples in the literature.
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a b s t r a c t

A plethora of convection modes may occur within a confined box of porous mediumwhen the associated
dimensionless Rayleigh number R is above some critical value dependent on the geometry. In many
cases the crucial Rayleigh number Rc for onset is different for each mode, and in practice the mode
with the lowest associated Rc is likely to be the dominant one. For particular sizes of box, however, it
is possible for multiple modes (typically three) to share a common Rc . For box shapes close to these
special geometries the modes interact and compete nonlinearly near the onset of convection. Here this
mechanism is explored and it is shown that generically the dynamics of the competition takes on one
of two possible structures. A specific example of each is described, while the general properties of the
system enables us to compare our results with some previous calculations for particular box dimensions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Natural convection can occur in a porous medium if the buoy-
ancy forceswithin the fluid are sufficiently strong to overcome vis-
cous drag. Convection assists in efficiently transporting heat and is
of importance in many applications including the geothermal en-
ergy industry. By targeting hot upwellings of fluid for extraction,
the bore depth and the cost of a project can be reduced. One mo-
tivation for the present study is to gain further understanding of
the convection patterns that may occur in finite domains thereby
assisting in the location of geothermal upwellings.

Convection in porous media was first studied by Horton and
Rogers [1] and Lapwood [2] who considered a layer of saturated
porous media of unbounded horizontal extent. Linear stability
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analysis shows that if the value of the dimensionless Rayleighnum-
ber R (which is defined formally in (6)) exceeds the critical value of
4π2, then convection begins. Furthermore, the preferred pattern is
one in which the convection cells span the full height of the layer
and have a square-like profile. Laterwork by Beck [3] extended this
model by restricting the domain to a three-dimensional finite box
with no-flux conditions imposed on the sides. Then in order to sat-
isfy the boundary conditions the horizontal mode-numbers of the
possible solutions are no longer unrestricted but instead belong to
a certain discrete spectrum of values. If we let p and q denote the
mode numbers in the directions parallel to the horizontal edges of
the box, then the critical Rayleigh number Rc depends on p and q
and on the respective dimensionless lengths of the box Lx and Ly.
In particular

Rc(p, q) =
π2

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2
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
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
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2

. (1)

The solution mode with the lowest critical Rayleigh number
is identified as the ‘‘preferred mode’’ and is clearly dependent on
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Fig. 1. (After Beck [3].) The preferred modes at the onset of convection, as a function of the horizontal aspect ratios of the box Lx and Ly . The identity of the preferred mode
is denoted by the pair of horizontal mode-numbers (p, q).

Lx and Ly. Beck [3] calculated the form of Rc and his somewhat
intricate result is reproduced in Fig. 1. This shows that the identity
of the preferred mode is not a simple matter and the Lx/Ly
parameter space is divided into many regions, some of which are
quite small in extent. There is obvious symmetry about the line
Lx = Ly where the horizontal domain is square. It is not surprising
that when the plan of the box is very far from square, with one
of Lx or Ly much larger than the other, then the preferred mode
is two-dimensional with convection rolls aligned perpendicular to
the longer side. Apart from this behaviour, there is little else in the
structure of Fig. 1 that is easily explained. Themany points in Lx/Ly
spacewhere regionsmeet indicate box dimensions forwhichmore
than one mode share the same critical Rc . Near these crossings the
interaction ofmodes canbedescribedby aweakly nonlinear theory
and an exploration of this phenomenon is the main aim for this
work.

There have been many numerical studies of pattern selection
in rectangular boxes including those by Horne and his colleagues
[4–6], Straus and Schubert [7,8] and Riley and Winters [9]. Some
corresponding analytical studies may be found in [10,11] and [12].
Particular mention should bemade of the results of Riley andWin-
ters [13] who studied the bifurcation process of interacting modes
in a two-dimensional box as the Rayleigh number increases. Later
work [14] introduced the refinement of sidewall heat imperfec-
tions, which breaks the symmetry of the pitchfork bifurcations.
Borkowska–Pawlak and Kordylewski [15,16] explored the effect
of changing the Prandtl values in a square box and in [17] used
a Galerkin approach to uncover the bifurcations that may occur
in a three-dimensional box. Zebib and Kassoy [18] calculated heat
transfer rates of various modes and thereby concluded that two-
dimensional ‘‘roll’’ patterns are preferred over three-dimensional
‘‘cell’’ patterns, at least at relatively small Rayleigh numbers.While
our focus here is on describing the behaviour of convection in a box
as the aspect ratios are allowed to vary, it is acknowledged that
other physical effects also influence the pattern selection problem.
Vincourt [19] studied the effect of non-uniform heating on a sys-
temwhile the introduction of heterogeneous porositywas the sub-
ject of [20].

Steen [21] used an eigenfunction expansion technique to
determine the eventual steady-state solution of convection in a box
with Lx = Ly = 21/4. This choice, while initially seeming somewhat

strange, was motivated by some of the results in Fig. 1. It is noted
that a box with these particular aspect ratios is one of critical
dimensions in as much that the (1, 0), (0, 1) and (1, 1) modes all
share a common onset Rayleigh number. By reducing the problem
to a system of ordinary differential equations it was demonstrated
that there are a number of finite-amplitude stable solutions;
which is eventually realised depends on the initial state of the
system. Other solutionswere also detected, including a conduction
solution and configurations in which multiple modes co-exist but
all of these are unstable. Steen’s method of analysis is underpinned
by a neat transformation whereby the nullcline surfaces become
linear planes. Such a transformation is not implemented in this
paper as it assumes that no symmetry-breaking effects occur,
which is not necessarily the case here. Other examples are also
considered, including a cubic box (Lx = Ly = 1) and a slightly
stretched box.

Florio [22] elucidated the qualitative evolution of convection
modes in boxes for which three modes share identical critical
Rayleigh numbers. He used perturbation methods to derive cou-
pled equations for the amplitudes Ai (i = 1, 2, 3) of the respective
modes; these equations take the generic form

dAi

dτ
= Ai


αi −

3
j=1

γijA2
j


for i = 1, 2, 3 (2)

where τ is a dimensionless time variable and the coefficientsαi and
γij are all positive andwhich depend on the particularmodes under
investigation. These equations admit stable solutions inwhich pre-
cisely one of the modes is non-zero along with a conduction solu-
tion in which each Ai = 0 and other solutions for which two of the
modes do not vanish; however these latter solutions are unstable.

Considering the amplitude equations (2), it can be shown that
in addition to the three primary modes there must exist three
secondary solutions for which precisely twomodes are simultane-
ously present [13,23]. Thus we conclude that there are three pri-
mary and three secondary solutions for every example. There is,
however, one aspectwhichmay differ between examples; depend-
ing on the values of the coefficients in the system (2) it is some-
times possible to also have a tertiary fixed point solution for which
all three modes do not disappear. It transpires that the dynamics
of the system can be distinguished depending on whether or not
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