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h i g h l i g h t s

• Elliptically shaped solitary waves without orbital angular momentum (OAM) are unstable.
• We study the effects of OAM on elliptically shaped solitary waves.
• A shelf of radiation forms under the solitary wave, and radiates momentum.
• Modulation theory with mass and momentum losses compares well with full numerical solutions.
• ‘‘Chirp’’ solution cannot incorporate losses, and hence only trajectory compares well.
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a b s t r a c t

The addition of orbital angular momentum has been previously shown to stabilise beams of elliptic cross-
section. In this article the evolution of such elliptical beams is explored through the use of an approximate
methodology based on modulation theory. An approximate method is used as the equations that govern
the optical system have no known exact solitary wave solution. This study brings to light two distinct
phases in the evolution of a beam carrying orbital angular momentum. The two phases are determined
by the shedding of radiation in the form of mass loss and angular momentum loss. The first phase is dom-
inated by the shedding of angular momentum loss through spiral waves. The second phase is dominated
by diffractive radiation loss which drives the elliptical solitary wave to a steady state. In addition to mod-
ulation theory, the ‘‘chirp’’ variational method is also used to study this evolution. Due to the significant
role radiation loss plays in the evolution of an elliptical solitary wave, an attempt is made to couple radi-
ation loss to the chirp variational method. This attempt furthers understanding as to why radiation loss
cannot be coupled to the chirp method. The basic reason for this is that there is no consistent manner
to match the chirp trial function to the generated radiating waves which is uniformly valid in time. Fi-
nally, full numerical solutions of the governing equations are comparedwith solutions obtained using the
various variational approximations, with the best agreement achieved with modulation theory due to its
ability to include both mass and angular momentum losses to shed diffractive radiation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The propagation of a bulk optical solitary wave in a nematic liq-
uid crystal, a so-called nematicon [1], has become an active area of
study [2,3] since their first experimental demonstration [4]. These
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studies aremore general, however, as the equations governing bulk
optical solitary waves in a nematic liquid crystal also apply to bulk
solitary waves in thermal media [5], photorefractive crystals and
other optically active bulkmedia [6]. A similar system of equations
to that governing these bulk optical solitarywaves arises inαmod-
els of fluid turbulence [7,8]. Nearly all of these optical studies have
dealtwith circularly symmetric beams, however. Elliptical bulk op-
tical solitary waves introduce newmechanisms and effects not en-
countered with circularly symmetric beams.

The propagation of an elliptical cross-section beam in local
media has been an experimental [9,10] and theoretical issue
[11–13]. In local media, such beams are described by nonlinear
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Schrödinger (NLS)-type equations [11–13]. In addition to the
standard instability of two dimensional solitary waves governed
by nonlinear Schrödinger equations [6,14], there is an additional
instability of elliptical beams due to the existence of the different
major and minor axes of such optical beams, as the amount of
nonlinearity required to support a radially symmetric solitary
wave is dependent on the peak beam intensity [10]. Hence, the
peak beam intensity also determines the diffraction angle that
must balancewith the self-focusing of the optical beam to self-trap
[1,2] and thus forma solitarywave. For an optical beam to self-trap,
radial symmetry is then required. However, an elliptical beam is
asymmetric and, hence, difficulties arise in the support required
for the two competing diffraction angles [10,11]. The term elliptic
solitary wave will be used from here on to describe an elliptical
cross-section solitary wave. Further, adding to the difficulty
in forming an elliptic solitary wave, it has been shown both
experimentally [9,10,15] and theoretically [11–13] that the widths
of the elliptic beam periodically oscillate, as would be expected
from the general behaviour of beams for NLS-type equations.

Several methods have been suggested to aid in the formation
and stabilisation of an elliptic solitary wave before it diffracts
into a circularly symmetric beam. Examples are to use partially
incoherent elliptic beams with an anisotropic mutual coherence
function [9,10], a medium with a nonlocal response [12,16] or
applying an orbital angular momentum to the elliptic-shaped
beam [13]. The propagation of an elliptic solitary wave in the non-
local medium of a nematic liquid crystal (NLC) [2] is the subject of
this work.

Elliptic solitons have been shown to exist in a nematic liquid
crystal [16], which is an example of a nonlocal, nonlinear medium
[2]. The key to the behaviour of an elliptic solitary wave in a
nematic liquid crystal is the self-focusing response of an NLC. A
nematic molecule tends to align itself with the direction of an
electric field, whether this is an external bias field applied across
the liquid crystal cell or that of an optical beam input into the
cell [2,17]. If the optical beam is of sufficient power to overcome
the Freédericksz threshold [2,17–19] the nematic molecules will
rotate, thus altering the refractive index of the NLC. If the refractive
index increases, this self-focusing response of the beam can
balance diffraction, resulting in a solitary wave, or nematicon [2,3].
In addition, it has been shown that nematicmolecules tend to align
with the major axis of an elliptic beam [16]. However, the issue of
the stability of elliptic beams has not been addressed.

In the present work, an elliptical cross-section optical beam
with orbital angularmomentumpropagating through a finite sized
nonlocal NLC cell is studied. As stated above, to induce the self-
focusing response of the NLC, the optical beam intensity must be
above the minimum to enable the nematic molecules to rotate,
the Freédericksz threshold [2,17–19]. To enable the use of mil-
liwatt beam powers a pre-tilt is induced within the NLC so the
molecules form an angle θ0 ∼ π/4 with the optical wavefront,
with the Freédericksz threshold reduced to exactly zerowhenπ/4.
In this manner, milliwatt optical beam powers induce a sufficient
change in the nematic’s refractive index [20] to enable a nemati-
con to form. There are two main techniques for applying the de-
sired pre-tilt angle. The first is to apply an external static electric
field perpendicular to the optical axis in the direction of polari-
sation of the optical field. The second technique creates a static
charge on the cell walls by ‘‘rubbing’’ them, thus causing the ne-
matic molecules near the cell walls to rotate [2]. This tilt angle is
then transferred throughout the bulk of the NLC cell by the inter-
molecular elastic links [2]. Rubbing the cell walls to pre-tilt the
nematic molecules results in different decay rates of the nematic
response to the optical beam. In one transverse dimension a linear
decay is experienced [21], while in two transverse dimensions [22,
23] a logarithmic decay results. This implies that the nematic re-
sponse to the beam extends to the boundaries of the NLC cell and,

as a result, the inclusion of proper boundary conditions is vital in
order to model an elliptic solitary wave accurately.

The present workwill focus on the role diffractive radiation and
orbital angular momentum shed to diffractive radiation play in the
evolution of an elliptical nematicon. While it has been found that
angular momentum can stabilise an elliptical nematicon for short
evolution distances [13], typically ∼5–10 revolutions of the ma-
jor axis, it has been found that on longer scales, which amount
to ∼100 rotations, that angular momentum loss to diffractive ra-
diation causes the elliptical solitary wave to become circular and
stop rotating. In addition to this effect of shed diffractive radiation,
the effect the boundaries have on the evolution of elliptic solitary
waves will also be investigated. This analysis will be based on us-
ing an exact solution for the director distribution and modulation
equations [24] for the optical field derived using suitable trial func-
tions [25,26] in a Lagrangian representation of the governing equa-
tions. Modulation theory has proved to be a successful technique
for modelling the evolution of nonlinear optical beams in NLC, giv-
ing excellent agreement with full numerical solutions of the gov-
erning equations [27–33] and with experimental results [34–36].
In the presentworkwe showhow the shed diffractive radiation can
be studied using geometric optics. We obtain approximate evolu-
tion equations for the elliptical solitarywave parameterswhich ex-
plain the relevant features of the processes observed in numerical
solutions.

2. Governing equations

Consider a polarised, coherent elliptical cross-sectional optical
beam input into a finite sized NLC cell. Let us take the z direction
as the propagation direction. The nematic molecules are arranged
in a planar configuration within the NLC cell. The optical beam is
polarised in the x direction, which results in molecular rotation in
the (x, z) plane [1,2,4,37,38]. The nematic molecules are pre-tilted
by an angle θ0 ∼ π/4 in the (x, z) plane [20], enabling the use
of milliwatt beam powers, as the Freédericksz threshold is thus
overcome [2,17–19]. The pre-tilt of the nematic is achieved by rub-
bing the cell walls. The intermolecular elastic forces of theNLC pass
the rotation then achieved through the bulk of the medium, thus
obtaining a semi-uniform pre-tilt. The optical beam’s electric field
causes a further rotation of the director by an angle θ , so that the
total director angle is given byφ = θ0+θ , relative to the z axis. The
perturbation of the director due to the optical beam is small formil-
liwatt beam powers, |θ | ≪ |θ0|. The non-dimensional equations
governing the propagation of the optical beam in this small extra
rotation limit in the paraxial approximation are a strongly coupled
pair of partial differential equations (PDEs), the first of which is an
NLS-like equation for the optical beams and the second is Poisson’s
equation for the director rotation [21,22,39,40], these being

iEz +
1
2
∇

2E + 2θE = 0, (1)

ν∇2θ + 2|E|
2

= 0. (2)

The Laplacian ∇
2 is in the (x, y) plane and E is the complex val-

ued envelope of the electric field. The elastic response of the NLC
is given by the nonlocality parameter ν, which is experimen-
tally O(100) [34]. In experiments, the optical beam experiences a
phenomenon known as walk-off due to the refractive index be-
ing a tensor [24], whereby the optical beam deviates from the
input wavevector along the z direction and follows the beam’s
Poynting vector. This walk-off has been removed from the electric
field equation (1) by using a phase transformation of the electric
field [27]. The NLC cell is finite sized and is a rectangle with di-
mensions 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly.
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