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h i g h l i g h t s

• The spectrum of traveling water waves is asymptotically approximated, considering two and three-dimensional perturbations.
• A multiple scale expansion is employed, coupling wave slope to Bloch parameter.
• The radius of the disc of analyticity of the spectrum is predicted, and compared to numerical simulations.
• Modulational instabilities are computed.
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a b s t r a c t

The spectrum of periodic traveling waves in deep water is discussed. A multi-scale method is used,
expanding the spectral data and the Bloch parameter in wave amplitude, to compute the size and location
ofmodulated instabilities. The role of these instabilities in limiting the spectrum’s analyticity is explained.
Both two-dimensional and three-dimensional instabilities are calculated. The asymptotic predictions are
compared to numerical simulations.
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1. Introduction

The spectral stability of traveling deep-water waves is stud-
ied. The water wave stability problem has a rich history, with
great strides made in the late sixties with the work of Benjamin
and Feir [1] and the development of Resonant Interaction Theory
(RIT) [2–5]. The predictions of RIT have since been leveraged heav-
ily by numerical methods; the influential works of MacKay and
Saffman [6] and McLean [7] led to a taxonomy of water wave in-
stabilities based on RIT. The most recent review article is that of
Dias and Kharif [8]; since the publication of this review a number
ofmodern numerical stability studies have been conducted [9–13].

In RIT, wave dynamics are studied using approximate models
for the evolution of the amplitude of a small number of weakly
nonlinear wave modes: triads, quartets, etc. Examples of such
model equations which include modulational effects are the non-
linear Schrödinger equation, the Dysthe equation, and the Davey–
Stewartson/Benney–Roskes equations [4,14–16]. The stability of
Stokes waves has been studied in such models, often they were
derived for exactly this purpose [17–19].
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In this work, the spectrum of traveling water waves is approxi-
mated via small amplitude asymptotic expansion. This approach
contrasts the vast majority of spectral stability computations,
which are primarily numerical. Typical numerical computations
calculate the spectrumvia an eigensolver at each fixed amplitude—
see for example [9,20,10]. Boundary perturbation methods take
an alternative approach, expanding the traveling wave and spec-
trum in amplitude. Boundary perturbation methods calculate the
coefficients of a series representation of the spectrum. Boundary
perturbation methods have been applied to compute water waves
numerous times [21–24] and are reviewed in [25]. This approach
is employed for the water wave spectrum in [26,27].

In a series of recent works, the author and collaborators derived
the weakly nonlinear asymptotics of the spectrum in conjunction
with the development of boundary perturbationmethods, for deep
water gravity waves in [13], including surface tension in [28], and
with finite depth effects in [29]. Each article in this series considers
a two-dimensional fluid, and expands the spectrum in amplitude at
a sampling of fixed Bloch parameters; instabilitieswhich have both
fixed Bloch parameter and are analytic in amplitude are observed
to be rare.

It is known that small amplitude instabilities bifurcate from a
set of resonant configurations, whose locations may be predicted
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by linear theory [7,8]. These resonant configurations are the
Bloch parameters for which the spectrum of the linearization
about the flat-state contains eigenvalue collisions. It is known
that the spectrum is analytic as a function of amplitude at all
Bloch parameters where the flat-state eigenvalues are simple [30].
Recent numerical simulations suggest that the spectrum is also
analytic at eigenvalue collisions, but that the radius of the disc
of analyticity vanishes as the Bloch parameter approaches the
resonant configurations [28,29]. This vanishing radius has been
proposed as a mechanism for detecting instabilities [27].

The potential flow equations have traveling wave solutions
which are analytic in wave slope [31]. The leading asymptotics
of the traveling wave have been computed numerous times
[32–35]. The asymptotics of the spectrum have been computed
for a two-dimensional fluid in [13,28,29], these asymptotics all
compute the spectrum with fixed Bloch parameter. In this work,
instabilities are computed with Bloch parameters which depend
on amplitude, on both a two-dimensional and three-dimensional
fluid. We use a multi-scale expansion which couples frequency
and amplitude in a manner analogous to the modulational ansatz
which is typically used to derive envelope equations [14,36,16];
we refer to the unstable spectral data computed in this manner as
modulational instabilities.

Often the term modulational is used to refer only to the Ben-
jamin–Feir instability. Although much of the asymptotic work re-
garding Benjamin–Feir dates back to the 1960s and RIT, more
recently a number of authors have been pursuing rigorous proof of
the existence of this instability in a variety of wavemodels [37,38].
Most similar in spirit to this work is that in [39,40], where an anal-
ogous perturbation in Bloch parameter is used. Although we con-
sider only formal asymptotics, such asymptotics have been used as
the basis for proofs of the existence of solutions in the TFE frame-
work [31,30].

In the current framework, the classic long wave modulational
instability, Benjamin–Feir, is recovered as are many other modu-
lational instabilities. The onset of instability at fixed Bloch param-
eter, and thus the amplitude at which the fixed Bloch parameter
spectrum loses analyticity, is predicted. Both two-dimensional and
three-dimensional perturbations are considered. The asymptotic
instability locations are compared with the numerical estimates of
these locations using the method of Akers and Nicholls [13,28].

The paper is organized as follows. Section 2 begins by in-
troducing the spectral stability problem for water waves. The
asymptotics of the spectrum are then presented, in subsections
organized by the type of resonance which is responsible for the
flat-state eigenvalue collisions. Triad resonance is presented in
Section 2.1; quartets are discussed in Section 2.2. We comment
on higher order resonances in 2.3, and finally compute the Ben-
jamin–Feir instability in Section 2.4.

2. Modulational instabilities of deep water waves

The widely-accepted model for irrotational motions of a large
bodyof deepwater in the absence of viscosity is the Euler equations

φxx + φyy + φzz = 0, z < ϵη, (2.1a)

φz = 0, z → −∞, (2.1b)
ηt + ϵ(ηxφx + ηyφy) = φz, z = ϵη, (2.1c)
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= 0, z = ϵη, (2.1d)

where η is the free-surface displacement and φ is the velocity
potential. System (2.1) has been nondimensionalized as in [13,41].

We assume that the wave slope, ϵ = A/L is small (A is a typical
displacement and L, the characteristic horizontal length, is chosen
so thatwaves in (2.1) have spatial period 2π ). The constantσ =

γ

gL2

is a Bond number comparing the relative importance of gravity, g ,
to surface tension γ .

The potential flow equations (2.1), have traveling wave solu-
tions which depend analytically on wave slope [31]. These solu-
tions can be written in terms of the speed c , the displacement η,
and the free surface trace of the potential Φ , each as a series in ϵ.
Periodic traveling wave solutions are often called Stokes’ waves,
as the leading order terms of this series were first written by
Stokes [32]. We consider the stability of the classic Stokes wave,
which is constant in transverse direction, and at leading order is
supported at wavenumber k0 = (1, 0). The speed, displacement
and free surface trace of the potential of this wave are, to O(ϵ2),
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η̄ =

∞
n=1

ϵnη̄n = ϵeik0·x + ϵ2


1 + σ

1 − 2σ


e2ik0·x + ∗ + O(ϵ3), (2.2b)
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e2ik0·x + ∗ + O(ϵ3). (2.2c)

In (2.2), the ∗ refers to the complex conjugate of the preceding
terms. This traveling wave solution is constant in the transverse
horizontal direction, here y. Later the perturbations of this wave
will be permitted to have non-trivial dependence on both horizon-
tal coordinates, x = (x, y).

The spectral stability of these traveling waves (2.2) is consid-
ered by writing Eq. (2.1) in terms of the free surface trace Φ and
displacement η, as in [42], then substituting the ansatz

η = η̄(x + ct) + δζ (x + ct)eλt , and

Φ = Φ̄(x + ct) + δu(x + ct)eλt ,
(2.3)

and neglecting quadratic powers of δ. The result is a generalized
spectral problem of the form

A(η̄, Φ̄, c)w = λB(η̄, Φ̄, c)w, (2.4)

where w = (ζ , u)T . Traveling waves are considered spectrally
unstable if solutions to (2.4) have λ with positive real part. It is
straightforward to calculate the operators A and B, and we refer
the interested reader to [13,28].

To solve (2.4), we must append boundary conditions for w.
Rather than assuming perturbations w share a period with the
traveling waves, thus restricting to superharmonic perturbations
[43], we consider arbitrary periods, including subharmonic pertur-
bations [44]. Subharmonic perturbations satisfy Bloch (quasi) pe-
riodic boundary conditions [45]. If the traveling wave is x-periodic
with period L, then the perturbations satisfy

w(x + L, y) = eipLw(x, y). (2.5)

For L = 2π-periodic traveling waves, it is sufficient to consider the
set of Bloch parameters with p ∈ [0, 1). Similar conditions apply in
the y-direction,whose corresponding Bloch parameter is labeled q;
we will combine these two parameters in a vector κ = (p, q)T .
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