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h i g h l i g h t s

• Bayesian formulation of variational assimilation for quasilinear equations.
• Uniqueness of minimizers for small observational times.
• Uniqueness of minimizers for small prior covariance.
• Existence of critical points with large Morse index.
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a b s t r a c t

In this paper we apply the 4D-Var data assimilation scheme to the initialization problem for a family of
quasilinear evolution equations. The resulting variational problem is non-convex, so it need not have a
unique minimizer. We comment on the implications of non-uniqueness for numerical applications, then
prove uniqueness results in the following situations: (1) the observational times are sufficiently small;
(2) the prior covariance is sufficiently small. We also give an example of a data set where the cost func-
tional has a critical point of arbitrarily large Morse index, thus demonstrating that the geometry can be
highly nonconvex even for a relatively mild nonlinearity.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

An important problem in data assimilation is to estimate the
initial state of a physical system given only noisy, incomplete ob-
servations of the state at later times. To make this precise, suppose
y(t) solves an evolution equation yt = F(y) in some function space
V and the observations of the state are given by a bounded linear
operator H: V → Rq. Given observations z1, . . . , zN ∈ Rq at times
t1 < · · · < tN , one would like to find the initial condition u = y(0)
that best matches the empirical data.

Of course it is important to carefully formulate what is meant
by the ‘‘best’’ initial condition, to ensure that the problem is
well-posed and has a physically meaningful solution. A common
approach, which we adopt in this paper, is to minimize the cost
functional

J(u) :=
1
2

N
i=1

R−1/2 (Hy(ti)− zi)
2 +

1
2σ 2

∥u − u0∥
2
V (1)

for some fixed u0 ∈ V and σ > 0. It can be shown through stan-
dard variational methods that J admits a minimizer (see [1,2] for
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details). However, if the forward problem is nonlinear J may fail to
be convex and so uniqueness is not guaranteed.

It is common practice (see, for instance, [3–6]) to solve a suit-
able discretization of the regularized variational problem using a
gradient-based algorithm. Implicit in the implementation of such
an algorithm is the assumption of a unique minimizer for the vari-
ational problem—gradient descentmethods are of course local and
do not have the ability to distinguish between local and globalmin-
ima. However, while widely recognized as a difficulty inherent in
the nonlinear case (cf. [7,8]), the problem of uniqueness has so far
received little attention in the literature.

A short-time uniqueness result for Burgers’ equation appeared
in [2] under the assumption of continuous-in-time observations,
using the cost functional T

0
|Hy(t)− z(t)|2 dt +

1
2σ 2

∥u − u0∥
2
V .

There it was proved that the variational problem admits a unique
minimizer when the maximal observation time T is sufficiently
small, by showing that critical points are fixed points of a map (cf.
(13)) that is a contractionwhen T is small. This turns out to be quite
different from the case of discrete-time observations considered in
the current paper—in the continuous case the data term becomes
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negligible as T → 0, whereas in the discrete case the data will
always have a nontrivial contribution to the regularized cost func-
tion, no matter how small the observational times.

The discrete-time problemwas investigated numerically in [9],
where a unique minimizer was observed as long as σ > 0. For
the non-regularized (σ = 0) case—corresponding to an improper
prior in the Bayesian formulation—multiple minimizers were
found numerically.

An interesting approach to uniqueness appeared in [10], in
which a so-called curvature × size condition was used to establish
uniqueness for the class of ‘‘weakly nonlinear inverse problems’’
(which includes the initialization problem for semilinear evolution
equations). A current summary of these geometric methods can be
found in [11]. It was shown there that the initialization problem
admits a unique solution provided one is given an H1 observation
of the solution (in both space in time).While geometrically appeal-
ing, thesemethods seem less suited to situationswhere only partial
information is available.

The variational problem for (1) can be viewed as a Tikhonov
regularization of the log-likelihood functional

u →

N
i=1

R−1/2 (Hy(ti)− zi)
2 ,

where R is the observational covariance matrix and y(ti) is
the solution to the evolution equation with initial condition u,
evaluated at time ti. Such regularizations for linear problems are
well-established; some classical sources are [12–15] and amodern
overview can be found in [16].

The non-regularized problem is ill-posed, in the sense that it
does not necessarily possess a minimizer in the space V . Ill-posed
inverse problems are well-represented in the literature, with clas-
sic examples being the determination of a diffusion coefficient
for the heat equation, or a source term for a semilinear reac-
tion–diffusion equation. By definition these problems have one of
the following properties:
(1) no solutions exist;
(2) a solution exists but is not stable with respect to perturbations

of the data;
(3) multiple solutions exist.
In the literature one can find many results of existence [7,17,18];
uniqueness [19]; existence and uniqueness [20,21]; uniqueness
and stability [22]. A recent survey of some analytic uniqueness
results can be found in Chapter 6 of [23]. However, the question of
uniqueness for regularized, nonlinear variational problems seem
to be less well studied.

There is a Bayesian interpretation of (1) in which the ∥ ·∥V term
corresponds to a prior distributionwith covariance proportional to
σ 2 and minimizers of J correspond to modes of the posterior dis-
tribution, hence the variational problem for J admitsmultiplemin-
imizers precisely when the posterior distribution is multimodal.
This interpretation also provides a useful interpretation of the pa-
rameter σ , and suggests how it should be chosen based on prior
information.

The goal of this paper is to describe this Bayesian formalism
for a family of quasilinear evolution equations (which includes
reaction–diffusion equations and viscous conservation laws) and
determine sufficient conditions to guarantee unimodality of the
resulting posterior distribution. We emphasize that our methods
only assume finite data at each observational time (for instance,
projection onto the first N Fourier modes), rather than complete L2
or H1 knowledge of the state.

1.1. Some notation and conventions

Throughout we denote the L2(0, 1) norm and inner product by
∥ · ∥ and ⟨·, ·⟩, respectively. We let V := H1

0 (0, 1), with norm ∥u∥V

:= ∥ux∥. This is equivalent to the standard H1(0, 1) norm, because

π∥u∥ ≤ ∥ux∥ for anyu ∈ H1(0, 1). It iswell known thatH1
0 (0, 1) ⊂

L∞(0, 1), with sup |u| ≤ ∥ux∥. We will frequently make use of the
inequality between the arithmetic and geometric means,

2ab ≤ λa2 + λ−1b2 (2)

for any positive a, b and λ, which we refer to as the AM–GM
inequality.

2. Statement of results

For the remainder of the paper we consider a quasilinear
parabolic equation

yt + f (y)x = yxx + r(y) (3)

on the interval [0, 1], withDirichlet boundary conditions.Wemake
the standing assumption that f and r are both of class C2. This is
more than sufficient to guarantee that the initial value problem for
(3) is well-posed, as will be seen in Proposition 3. The additional
regularity is needed in computing the first and the second variation
of the cost functional. We also need to ensure that the initial value
problem admits a global (in time) solution for any initial value, so
that J is well-defined on all of H1

0 . This will be the case if 0

−∞

1
|r(y)| + 1

dy =


∞

0

1
|r(y)| + 1

dy = ∞. (4)

If this condition is not satisfied, there may exist initial conditions
for which the solution blows up in a finite amount of time.

We also assume that the observation operator H is bounded on
L2, and hence has a bounded adjoint H∗:Rq

→ L2.
Our first result is that the problem has a natural Bayesian for-

mulation with respect to a Gaussian prior distribution, the signif-
icance of which will be discussed in Section 5. This requires an
additional regularity assumption on r and f that will not be needed
elsewhere in the paper.We let∆D denote theDirichlet Laplacian on
L2(0, 1)—that is, the unbounded, selfadjoint operator with domain
H2(0, 1)∩H1

0 (0, 1) and bounded inverse denoted by∆−1
D : L2(0, 1)

→ H2(0, 1) ∩ H1
0 (0, 1).

Theorem 1. Let µ0 denote the Gaussian measure on L2(0, 1) with
covariance C0 = −σ 2∆−1

D and mean u0, and suppose that r(y) and
f ′(y) are uniformly Lipschitz. Given observations {zi}Ni=1 with i.i.d.
N (0, R) Gaussian noise, there is a well-defined posterior measureµz ,
with Radon–Nikodym derivative

dµz

dµ0
(u) ∝ exp


−

N
i=1

R−1/2 (Hy(ti)− zi)
2 . (5)

Moreover, the mean and covariance of the posterior distribution are
continuous functions of the data, z = {zi}.

In fact, one has that the posterior measure is Lipschitz with
respect to the Hellinger metric; the reader is referred to [1] for
further details. The nontriviality of this result is due to the infinite-
dimensional setting of the problem. Because there is no analog of
the Lebesgue measure for infinite-dimensional spaces, one cannot
define the posteriormeasure using the exponential of J as a density,
as is done in finite dimensions. Thus it is necessary to define the
posterior relative to the prior distribution, and care must be taken
to ensure that this density, given by (5), is in fact µ0-integrable
and hence can be normalized. This normalizabilitywill follow from
estimates on solutions to the nonlinear evolution equation.

There is thus a Bayesian formulation of the regularized varia-
tional problem, for which the MAP (Maximum A Posteriori) esti-
mators are precisely the global minima of the cost functional (1).
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