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a b s t r a c t

We consider the growth of some indicators of arithmetical complexity of rational orbits of (piecewise)
affine maps of the plane, with rational parameters. The exponential growth rates are expressed by a set
of exponents; one exponent describes the growth rate of the so-called logarithmic height of the points of
an orbit, while the others describe the growth rate of the size of such points, measured with respect to
the p-adic metric. Here p is any prime number which divides the parameters of the map. We show that
almost all the points in a domain of linearity (such as an elliptic island in an area-preservingmap) have the
same set of exponents. We also show that the convergence of the p-adic exponents may be non-uniform,
with arbitrarily large fluctuations occurring arbitrarily close to any point. We explore numerically the
behaviour of these quantities in the chaotic regions, in both area-preserving and dissipative systems. In
the former case, we conjecture that wherever the Lyapunov exponent is zero, the arithmetical exponents
achieve a local maximum.

Crown Copyright© 2015 Published by Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with the analysis of indicators of arith-
metical complexity of points of rational orbits of affine and piece-
wise affine planar maps. We present a combination of rigorous
results and numerical experiments connecting the exponential
growth rate of certain arithmetical functions to the dynamics on a
divided phase space, where regular and irregular motions co-exist
(see Fig. 1). Our aim is to complement existing quantitative mea-
sures of irregularity of motion – Lyapunov exponents, entropies –
with measures of arithmetical complexity. Quantities of this type
– the so-called heights – are well-established in diophantine ge-
ometry, and recently similar constructs (algebraic and arithmeti-
cal entropies) have been introduced in dynamics in the context
of rational maps—see [1,2] and references therein. In particular,
there is a fairly complete theory of heights for polynomial auto-
morphisms [1, Section 7.1]. In a similar vein, the integrability crite-
ria for discrete-time dynamical systems [3] have been extended to
include tests of algebraic and arithmetical origin. Among the latter,
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the notion of diophantine integrability has recently been sug-
gested, based on the slow (sub-exponential) growth of heights [4].

We are interested in monitoring the arithmetical complexity of
the points of orbits of piecewise affine maps F : Q2

→ Q2 (no-
tated F : A2(Q) → A2(Q) when the distinction between affine
and projective phase space is important). These maps feature
highly complex dynamics from minimal ingredients, and the lit-
erature devoted to them is substantial, see, e.g., [5–13]. The in-
crease in complexity of the iterates of a piecewise affine map
derives solely from the growth of the coefficients, since the degree
remains the same; these are the growth rates of interest to us. By
contrast, for the iterates of polynomials and rational functions of
degree greater than one, the growth of the degree is a preferred
indicator of complexity—see for example [14–17,2].

The simplest measure of the complexity of a rational number
x = m/n is its height H(x), defined as [1, Chapter 3]

H(m/n) = max(|m|, |n|) gcd(m, n) = 1. (1)

The notions of size and height are extended to two dimensions as
follows

∥z∥ = max(|x|, |y|) H(z) = max(H(x),H(y)) z = (x, y). (2)

The height will typically grow exponentially along orbits, so we
define an allied quantity, the arithmetic exponent of the point z:

λ(z) = lim
t→∞

1
t

logH(F t(z)) (3)
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Fig. 1. Phase portrait of the area-preservingmap F defined in Eq. (11), with f given
in (12) and d = 1, showing a mixture of regular orbits on island chains and chaotic
orbits.

if the limit exists. We see that the arithmetic exponent of a point z
is the average order of the so-called logarithmic height log(H(z))
of the images of this point. Since λ(z) = λ(F(z)), the arithmetic
exponent is a property of an orbit. If z is a (pre)-periodic point, then
H(F t(z)) is bounded, so that λ(z) = 0 (as long as the orbit of z does
not go through the origin).

The quantity λ(z) is closely related to the arithmetic entropy
introduced by Silverman [2], where the limit (3) is replaced by a
lim sup.

Further indicators of complexity are defined by means of the
p-adic absolute value | · |p, where p is a prime number. (For back-
ground reference on p-adic numbers, see [18].) Let the order νp(m)

of an integer m be the largest non-negative integer k such that pk
dividesm, with ν(0) = ∞. This definition is extended to the ratio-
nal numbers r = m/n by letting νp(r) = νp(m) − νp(n) (the value
of this expression does not depend on m and n being co-prime).
Finally, we define

|r|p = p−νp(r).

The function | · |p : Q → Qhas the properties of the ordinary abso-
lute value, with the triangular inequality replaced by the stronger
ultrametric inequality

|x + y|p 6 max(|x|p, |y|p) or νp(x + y) > min(νp(x), νp(y)) (4)

where equality holds if |x|p ≠ |y|p (or νp(x) ≠ νp(y)). We shall be
using the estimate

νp(n) 6
log n
log p

n > 1. (5)

The following identity connects the various absolute values
over Q:

∀x ∈ Q \ {0}, |x|

p

|x|p = 1 (6)

where the product is taken over all primes. Only finitely many
terms of this product are different from 1; they correspond to the
prime divisors of the numerator and the denominator of x.

In two dimensions we use the quantities

∥z∥p = max(|x|p, |y|p) νp(z) = min(νp(x), νp(y)). (7)

The norm ∥ · ∥p and valuation νp can be shown to satisfy the ul-
trametric inequalities analogous to (4), respectively, with equality
holding if the two terms have distinct size. Next we define the ana-
logue of (3), namely the p-adic (arithmetic) exponent λp(z) of the
initial point z of an orbit:

λp(z) = lim
t→∞

−
1
t

νp(F t(z)). (8)

Comparing (8) with (3), we note that the function νp is already log-
arithmic, and that there is no need of considering separately nu-
merator and denominator, since the prime p will appear only in
one of them.

The functions λ and λp should be compared with the so-called
canonical height defined for morphisms of degree greater than
one [1, Chapter 3]. In this case, in place of (1) one defines

Ĥ(m/n) = max(|m|, |n|)

p

max(|m|p, |n|p)

and then one lets

ĥ(x) = lim
t→∞

1
deg(F)t

logH(F t(x))

where deg(F) > 1 is the degree of F . The height ĥ behaves nicely
under iteration: ĥ(F(x)) = deg(F)ĥ(x). It measures the average
rate of growth of the degree of F , collecting contributions from
all absolute values. In our case, we have kept the contributions
from the various primes separate (as in the so-called local canonical
heights) because they contain valuable information about the
dynamics.

The height may be used to characterise generic properties of
rational points. To this end, we consider the set BN of points in Q2

whose height is at most N:

BN = {z ∈ Q2
: H(z) 6 N}. (9)

This set is finite. Indeed if H(m/n) 6 N , then H(−m/n),H(±n/m)
6 N , and we deduce that

#BN =


3 + 4

N
k=2

φ(k)
2

∼
122

π4
N4 (N → ∞)

where φ is Euler’s function [19, Section 5.5] and where we have
used the estimate

N
k=1 φ(k) ∼ 3N2/π2 (see [19, Theorem 330]

and also [1, p. 135]). Half of the elements of BN liewithin the square
∥z∥ 6 1, where they approach a uniform distribution (because the
Farey sequence has that property [20,21]); the other half lie outside
the square, and they are obtained from the points inside the square
by an inversion. Thus the limiting distribution of points of bounded
height approaches a smooth limit on sufficiently regular bounded
sets.

Let us now consider a set A such that A ⊂ X ⊂ Q2, where X is
some ambient set (possibly the whole of Q2). The density µ(A) of
A (in X) with respect to BN is given by

µ(A) = lim
N→∞

#(A ∩ BN)

#(X ∩ BN)
(10)

if the limit exists.1 If µ(A) = 1, then we say that A is ‘generic’, or
that the defining property of A holds ‘almost everywhere’ (in X).
For example, the rational points on a smooth curve on the plane
have zero density and hence are non-generic.

1 For this it suffices to require that the closure of the boundary of A has zero
measure (Jordan measurability).
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