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a b s t r a c t

In this paper we develop an extended center manifold reduction method: a methodology to analyze the
formation and bifurcations of small-amplitude patterns in certain classes of multi-component, singularly
perturbed systems of partial differential equations. We specifically consider systems with a spatially
homogeneous state whose stability spectrum partitions into eigenvalue groups with distinct asymptotic
properties. One group of successive eigenvalues in the bifurcating group arewidely interspaced, while the
eigenvalues in the other are stable and cluster asymptotically close to the origin along the stable semi-
axis. The classical center manifold reduction provides a rigorous framework to analyze destabilizations of
the trivial state, as long as there is a spectral gap of sufficient width. When the bifurcating eigenvalue
becomes commensurate to the stable eigenvalues clustering close to the origin, the center manifold
reduction breaks down. Moreover, it cannot capture subsequent bifurcations of the bifurcating pattern.
Through our methodology, we formally derive expressions for low-dimensional manifolds exponentially
attracting the full flow for parameter combinations that go beyond those allowed for the (classical) center
manifold reduction, i.e. to cases inwhich the spectral gap condition no longer can be satisfied. Ourmethod
also provides an explicit description of the flow on these manifolds and thus provides an analytical tool
to study subsequent bifurcations. Our analysis centers around primary bifurcations of transcritical type
– that can be either of co-dimension 1 or 2 – in two- and three-component PDE systems. We employ
our method to study bifurcation scenarios of small-amplitude patterns and the possible appearance of
low-dimensional spatio-temporal chaos. We also exemplify our analysis by a number of characteristic
reaction–diffusion systems with disparate diffusivities.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of pattern formation in evolutionary partial dif-
ferential equations is directly linked to dynamical systems bifur-
cation theory. At the onset of patterns, a ‘trivial state’ becomes
spectrally unstable as a control or bifurcation parameter, R, passes
through a critical value Rc,1. Typically, a ‘small amplitude pattern’
bifurcates from this state. When the evolution equation is defined
on a bounded domain Ω and the associated spectrum consists of
discrete eigenvalues, the very first step in the onset of pattern
formation can be studied by a center manifold reduction (CMR).
For values of R sufficiently close to Rc,1, the dynamics of the full
infinite-dimensional system can be reduced to the dynamics on
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an exponentially attracting low-dimensional center manifold, by
virtue of the existence of a spectral gap between the first eigen-
value(s) crossing the imaginary axis and all other, stable eigenval-
ues. The presence of this gap makes the analysis of the onset of
pattern formation completely equivalent to the study of bifurca-
tions in finite-dimensional dynamical systems (for instance, [1–3]).
Indeed, the small amplitude patterns that originate in this mech-
anism relate, in general, directly to the standard codimension 1
bifurcations (saddle–node, transcritical, pitchfork and Hopf): the
associated center manifolds are 1- or 2-dimensional.

The center manifold reduction is only valid for R ‘sufficiently
close’ to the – first – critical value Rc,1, so that the spectral gap is
sufficiently wide. However, in perhaps all examples of pattern
forming systems, the pattern originating at Rc,1 undergoes a next
bifurcation at some value Rc,2 of R et cetera. In other words, the
first bifurcation at onset is followed by a secondary one at Rc,2.
Since this latter concerns the bifurcating pattern and not the trivial
state it bifurcated from, it cannot be directly studied through the
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spectral decomposition for that state. One now needs, instead, sta-
bility properties of the pattern bifurcating at Rc,1. Generally speak-
ing, this is an impossible task — especially for analytical studies
of pattern evolution. To overcome that obstacle, formal and/or nu-
merical methods have been developed that are based on spectral
properties – eigenvalues and eigenfunctions – associated with the
original, trivial background state.

Such secondary, tertiary, et cetera subsequent bifurcations can-
not be described by CMR, simply because they do not occur in the
reduced (center manifold) flow. Therefore, they take place for val-
ues of R violating the spectral gap condition. This is often observed
in an explicit setting: the distance between the first, now unstable,
eigenvalue and the imaginary axis becomes proportional to that
between the next largest eigenvalue(s) and the same axis — note
carefully that none of these next eigenvalues needs to destabilize
for the secondary bifurcation to occur. In the terminology of
applied mathematics and/or physics: one must account for the
evolution of ‘modes’ associated with these next eigenvalues and
eigenfunctions, as these modes can no longer be ‘slaved’ to the one
that was first destabilized and that parameterizes the center man-
ifold. In principle, then, studying the full flow through the spectral
properties of the trivial state is possible, provided that one extends
CMR to a higher-dimensional system by a Galerkin approach. In
general, however, there is no ‘next ’ spectral gap in that extended
spectral problem: all next eigenvalues are typically commensu-
rable. Accordingly, there is no telling a priori how many modes
must be accounted for in this extended center manifold Galerkin
reduction — certainly not from the analytic point of view. See, for
instance, [4] and references therein for a practical study centering
on these issues.

Presently, we develop analytical (and asymptotic) extensions
of classical CMR. We describe the onset of pattern formation by
means of low-dimensional systems governing the dynamics of the
full evolutionary system for parameter values violating the spectral
gap condition. We term the process by which we derive such
simplified systems extended center manifold reduction (ECMR). Our
most generic results concern the extension of the 1-dimensional
CMR associated with a transcritical bifurcation to an explicit 2-
dimensional flow on an exponentially attracting 2-dimensional
(local) manifold. We also present explicit classes of systems with
codimension 1 bifurcations where this extended center manifold
is 3- or 4-dimensional.

An earlier version of this method was developed in the context
of a specific model problem, which concerned the emergence
and evolution of localized spatio-temporal patterns in a non-local,
coupled, phytoplankton-nutrient model in an oceanic setting,

ωt = εωxx − 2
√

εvωx + (p(ω, η, x) − ℓ)ω,

ηt = ε

ηxx + ℓ−1p(ω, η, x)ω


;

(1.1)

this is a scaled version of the original model proposed in [5]. In
(1.1), ω(x, t) and η(x, t) denote a phytoplankton and a (trans-
lated) nutrient concentration; x ∈ (0, 1) measures ocean depth.
The growth of the phytoplankton population is delimited by nutri-
ent and light availability; since light is attenuated with depth and
absorbed by phytoplankton, the term p(ω, η, x) is non-local in ω
and depends explicitly on depth x. For more details on this model
and its boundary conditions (BCs), see [5–7]. In realistic settings,
ε ≈ 10−5 while all other parameters — v, ℓ and those entering
p(ω, η, x) — can be considered O(1) with respect to ε [6]. There-
fore, (1.1) is studied in [6,7] as a singularly perturbed system. The
spectral problem associated with the stability of the trivial state
(ω(x, t), η(x, t)) ≡ (0, 0) — no phytoplankton, maximal and con-
stant nutrient concentration— has two distinct sets of (real) eigen-
values: µm = O(ε),m ≥ 1, and λn = λ∗ + λ̃n, with λ̃n = O(ε

1
3 )

and n ≥ 1; λ∗ can be ‘controlled’ by varying the parameters in (1.1),

whileµm < 0 are parameter-independent and negative. In [6], it is
shown through an asymptotic spectral analysis that the trivial state
is destabilized by a transcritical bifurcation, at which λ1 crosses
zero. The associated eigenfunction has the strongly localized na-
ture of a (stationary) deep chlorophyll maximum (DCM), the pattern
playing a central role in the simulations and oceanic observations
in [5].

In our terminology above, emergence of the deep chlorophyll
maximum represents the onset of pattern formation, and it occurs
as the product of the first bifurcation. For the parameter values
considered in [5], the deep chlorophyll maximum only exists (as a
stable, stationary pattern) in an asymptotically narrow strip of
parameter space: the primary bifurcation is almost directly fol-
lowed by a secondary, Hopf bifurcation through which emerges
an oscillating deep chlorophyll maximum [6,7]. In fact, station-
ary deep chlorophyll maxima were not even recorded in the nu-
merical simulations of [5] — the bifurcation scenario drawn there
starts directly with the oscillating deep chlorophyll maximum and
proceeds with period-doubling cascades and spatio-temporal
chaos. In other parameter regimes, not a deep chlorophyll maxi-
mum, but a benthic layer —a localizedmaximumat ocean’s bottom
— marks pattern formation. Numerical simulations have not indi-
cated a secondary bifurcation of the pattern in this regime. In [8],
we analytically substantiate this phenomenon using the frame-
work described in this treatise.

The predictions in [6] on the transcritical nature of trivial state
destabilization were validated in [7], as a first step, by restricting
analysis to the regime 0 < λ1 = O(εσ ) with σ > 1. In that
case, there is a spectral gap driven by the proximity of that primary
eigenvalue to the imaginary axis, λ1 ≪ minm≥1,n≥2{|µm|, |λn|} =

O(ε); the dynamics of system (1.1) can be reduced to a single am-
plitude ODE describing the transcritical bifurcation. As σ ↓ 1 and
λ1 becomes O(ε) like the µm’s, the spectral gap dissolves; modes
associated with all (linearly stable!) µm-eigenvalues must now be
taken into account. As a consequence, the 1-dimensional CMR is
expanded dramatically into an a priori infinite-dimensional sys-
tem. Analysis of thatmodel is nevertheless possible and establishes
the existence of a secondaryHopf bifurcation in (1.1),O(ε)-close to
the primary, transcritical one [7]. The existence of oscillating deep
chlorophyll maxima follows.

In the present paper, we show that this surprising fact —
that a secondary bifurcation becomes amenable to analysis by
extending CMR beyond its classical region of validity — is not
due to model specifics but intrinsically tied to the nature of the
spectrum associated with the trivial background state. In general,
our approach may be developed in the context of systems of the
form
∂

∂t


U
V


=


L 0

εK εM


U
V


+


F(U, V ; x)
εG(U, V ; x)


, (1.2)

for a ‘fast’, unknown U : Ω × R+ → RmU and a ‘slow’ V : Ω ×

R+ → RmV , with mU ,mV ≥ 1. The bounded spatial domain
Ω ⊂ Rn has a piecewise C1 boundary ∂Ω . The operatorsK, L and
M are assumed linear, spatial, differential operators and bound-
ary conditions guaranteeing well-posedness must apply. Several
specific assumptions on the spectrum of L and M and the non-
linearities F(U, V ; x) and G(U, V ; x) must hold, we refer to [8] for
more details. The aim of this paper is to present an exploration into
the possible impact of the extended center manifold reduction ap-
proach. Therefore, wewill mainly restrict our analysis to a strongly
simplified version of (1.2), i.e. to models of the type
Ut = LU + αU + F(U, V ),
Vt = ε [LV + βU + γ V + G(U, V )] , (1.3)

thus K = β , and with a slight abuse of notation, M = L + γ and
the operator L in (1.2) will be replaced by L + α. The linear dif-
ferential operator L in (1.3) — independent of ε — acts on L2(Ω),
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