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Ontology is a semantic analysis and calculation model, which has been applied to many
subjects. Ontology similarity calculation and ontology mapping are employed as machine
learning approaches. The purpose of this paper is to study the leave-two-out stability
of ontology learning algorithm. Several leave-two-out stabilities are defined in ontology
learning setting and the relationship among these stabilities are presented. Furthermore,
the results manifested reveal that leave-two-out stability is a sufficient and necessary con-
dition for ontology learning algorithm.
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1. Introduction

It is in philosophy that the term “ontology” is first ap-
plied to describe the connection nature of things and the
inherently hidden connections of their components. Ontol-
ogy, being a model for storing and representing knowl-
edge, has been widely applied in knowledge management,
machine learning, information systems, image retrieval,
information retrieval search extension, collaboration and
intelligent information integration in information and com-
puter science. Meanwhile, ontology is an effective con-
cept semantic model and a powerful analysis tool. It has
been used extensively in pharmacology, biology, medicine,
geographic information system and social science in the
past ten years (see Przydzial et al, [1], Koehler et al,
[2], Ivanovic and Budimac [3], Hristoskova et al., [4], and
Kabir [5]).
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A simple graph can be used to express the structure
of ontology. On that graph, each vertex represents a con-
cept, object or element in ontology. Each (directed or undi-
rected) edge refers to a relationship or hidden connec-
tion between two concepts (objects or elements). Let O
be an ontology and G be a simple graph of O. The pur-
pose of ontology engineer application is to get the simi-
larity calculating function and then compute the similar-
ities between ontology vertices. The inherent association
between vertices in ontology graph can be illustrated by
these similarities. Ontology mapping is to obtain the ontol-
ogy similarity measuring function by measuring the sim-
ilarity between vertices from different ontologies. Such a
mapping connects different ontologies, through which a
potential link between the objects or elements from dif-
ferent ontologies can be acquired. The ontology similar-
ity function Sim : V x V — R* U {0} is a semi-positive score
function mapping in which each pair of vertices maps to a
non-negative real number.

An advanced usage of handling the ontology similarity
computation is using ontology learning algorithm which
gets an ontology function f:V — R. Using such an on-
tology function, the ontology graph is mapped into a line
consisting of real numbers. After comparing the difference
between their corresponding real numbers, the similarity
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between two concepts can be measured and in which the
dimensionality reduction is the ore of the idea. If the on-
tology function is to be associated with ontology applica-
tion, a vector is a very good choice as it expresses all the
information of a vertex, for instance v. In a simpler repre-
sentation, the notations are slightly confused and v is used
to denote both the ontology vertex and its corresponding
vector. The vector is mapped to a real number by ontol-
ogy function f:V — R. The ontology function, which is a
dimensionality reduction operator, maps vectors of multi-
dimension into one dimensional ones.

All the related information of an arbitrary vertex in on-
tology graph G is expressed by a p dimensional vector,
which includes its instance, structure, name, attribute, and
semantic information of the concept which is correspond-
ing to the vertex and that is contained in its vector. In
order not to lose generality, it can be assumed that v =
{vq,...,vp} is a vector corresponding to a vertex v. Their
notations are slightly confused and v is adopted to repre-
sent both the ontology vertex and its corresponding vector.
In order to obtain an optimal ontology function f:V —
R, ontology learning algorithms are used by the authors.
Therefore, the value of |f(v;) — f(v;)| is used to determine
the similarity between two vertices v; and v;. Dimensional-
ity reduction, i.e., using real number to represent p dimen-
sion vector is the core of such kind of ontology algorithm.
In this way, we can regard an ontology function f as a di-
mensionality reduction operator f : RP — R.

There are many effective methods for getting efficient
ontology similarity measure or ontology mapping algo-
rithm. They have been studied in terms of ontology func-
tion. Moreover, the theoretical research of ontology algo-
rithms has been contributed by several researchers. The
uniform stability of multi-dividing ontology algorithm and
the generalization bounds for stable multi-dividing ontol-
ogy algorithms was put forth by Gao and Xu [6]. A gradi-
ent learning model for ontology similarity measuring and
ontology mapping in multi-dividing setting was proposed
by Gao and Zhu [7] cooperatively. In the setting, the sam-
ple error was determined in terms of the hypothesis space
and the ontology dividing operator in which one can sup-
pose that V is an instance space.

In this article, we research the influences of ontology
learning algorithm when two sample vertices are deleted
from ontology sample set. In next section, we describe
the detailed notations, definitions and setting of ontol-
ogy learning problem. And then, the main conclusions are
drawn in Section 3.

2. The notations, definitions and setting of ontology
learning problem

Suppose that V is a compact domain in Euclidean
space and Y is a set of labels. Let wu(v, y) be an
unknown probability distribution on Z=V xY and S=
{Wi.y1), ... (n,yn)} = (Wi, ¥, = (z), be an ontology
sample set consisting of n samples drawn i.i.d. from the
probability distribution on Z,. The aim of ontology learn-
ing is to predict an ontology function fs:V — R using the
empirical ontology data S which evaluates at a new ontol-
ogy vertex v to predict its corresponding value of y.

Let L: RV xV xR — R be the ontology loss function
and L(f, z) be the value of punishment for fixed ontology
function f and z = (v, y). Throughout our paper, we always
assume that the loss function L is square ontology loss
L(f.z) = (f(v) —y)? and there exists M which satisfies 0 <
L(f, z) < M for any f e F (here F is a hypothesis space in
ontology setting) and z € Z. Denote [(z) = L(f, z) for conve-
nience. Thus I(z) : V xY — R and we set £ = {I(f) : f € F}
as the space of ontology loss function.

The ontology expected error for fixed ontology func-
tion f, ontology loss function L and a probability distribu-
tion w is defined by: R(f) = EzL(f,z). When L is square
ontology loss, we have

R(f) = EzL(f.2) = fvy(f(v) - y)?dp(v.y)

=Eu|f(v) —y|*.

However, R(f) can’t be calculated directly since w is un-
known. In reality, we compute the ontology empirical er-
ror instead which is presented as R\s(f) = %Z?zlL(f, Z;).
In addition, in our square ontology loss setting, it is equal
to Rs(f) = 1 Y04 (F(0) — )2 = By, (F(v) —y)2, where 11,
is the ontology empirical supported on {vy, ..., v,} which
means fn =Y 14 8y;/n and &y, is the vertex evaluation
functional on v;.

In what follows, set S'J as the ontology training set
from S by deleting two vertices v; and v; (1 <i < j < n).
For our ontology learning setting, the functions fs and fg;
are the minimizers of ﬁs(f) and ﬁsi,j(f), respectively. The
notations Es and Ps are used to express the expectation
and the probability on the ontology training set S which is
drawn i.i.d, according to probability distribution on Z,.

An ontology algorithm is called symmetric if the
optimal ontology function can’t be changed when the
elements in training set S are re-arranged. Given an on-
tology training set S and an ontology function space F,
the almost ontology learning algorithm is defined as a
symmetric procedure which chooses an ontology function
ngE that minimizes the ontology empirical risk over all
ontology functions f € F, we infer

Rs(f&") < infRs(f) + &F, (1)
fer

where & > 0.
An ontology learning map is called (universally, weakly)
consistent if for any positive number ¢, > 0, we have

lim sup P{R(fs) > inf R(f) +&c} =0.
n—oo n fe]-'

The consistency is universal implies that the inequality
above is established with respect to the set of any measure
on Z, whereas weak consistency means only convergence
in probability and strong consistency requires almost sure
convergence.

Let F be any class of functions. F is a (weak) uniform
Glivenko-Cantelli (in short, uGC) class if for any positive
number &,

lim supP{sup |E,, f - E,f| > ¢} =0.
n—oo 4 feF

When comes to the ontology loss functions [, the definition
implies that for all distributions p there exist ¢, and J¢,.n
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