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a b s t r a c t 

Ontology is a semantic analysis and calculation model, which has been applied to many 

subjects. Ontology similarity calculation and ontology mapping are employed as machine 

learning approaches. The purpose of this paper is to study the leave-two-out stability 

of ontology learning algorithm. Several leave-two-out stabilities are defined in ontology 

learning setting and the relationship among these stabilities are presented. Furthermore, 

the results manifested reveal that leave-two-out stability is a sufficient and necessary con- 

dition for ontology learning algorithm. 

© 2015 Elsevier Ltd. All rights reserved. 

1. Introduction 

It is in philosophy that the term “ontology” is first ap- 

plied to describe the connection nature of things and the 

inherently hidden connections of their components. Ontol- 

ogy, being a model for storing and representing knowl- 

edge, has been widely applied in knowledge management, 

machine learning, information systems, image retrieval, 

information retrieval search extension, collaboration and 

intelligent information integration in information and com- 

puter science. Meanwhile, ontology is an effective con- 

cept semantic model and a powerful analysis tool. It has 

been used extensively in pharmacology, biology, medicine, 

geographic information system and social science in the 

past ten years (see Przydzial et al., [1] , Koehler et al., 

[2] , Ivanovic and Budimac [3] , Hristoskova et al., [4] , and 

Kabir [5] ). 
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A simple graph can be used to express the structure 

of ontology. On that graph, each vertex represents a con- 

cept, object or element in ontology. Each (directed or undi- 

rected) edge refers to a relationship or hidden connec- 

tion between two concepts (objects or elements). Let O 

be an ontology and G be a simple graph of O . The pur- 

pose of ontology engineer application is to get the simi- 

larity calculating function and then compute the similar- 

ities between ontology vertices. The inherent association 

between vertices in ontology graph can be illustrated by 

these similarities. Ontology mapping is to obtain the ontol- 

ogy similarity measuring function by measuring the sim- 

ilarity between vertices from different ontologies. Such a 

mapping connects different ontologies, through which a 

potential link between the objects or elements from dif- 

ferent ontologies can be acquired. The ontology similar- 

ity function Sim : V × V → R 

+ ∪ { 0 } is a semi-positive score 

function mapping in which each pair of vertices maps to a 

non-negative real number. 

An advanced usage of handling the ontology similarity 

computation is using ontology learning algorithm which 

gets an ontology function f : V → R . Using such an on- 

tology function, the ontology graph is mapped into a line 

consisting of real numbers. After comparing the difference 

between their corresponding real numbers, the similarity 
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between two concepts can be measured and in which the 

dimensionality reduction is the ore of the idea. If the on- 

tology function is to be associated with ontology applica- 

tion, a vector is a very good choice as it expresses all the 

information of a vertex, for instance v . In a simpler repre- 

sentation, the notations are slightly confused and v is used 

to denote both the ontology vertex and its corresponding 

vector. The vector is mapped to a real number by ontol- 

ogy function f : V → R . The ontology function, which is a 

dimensionality reduction operator, maps vectors of multi- 

dimension into one dimensional ones. 

All the related information of an arbitrary vertex in on- 

tology graph G is expressed by a p dimensional vector, 

which includes its instance, structure, name, attribute, and 

semantic information of the concept which is correspond- 

ing to the vertex and that is contained in its vector. In 

order not to lose generality, it can be assumed that v = 

{ v 1 , . . . , v p } is a vector corresponding to a vertex v . Their 

notations are slightly confused and v is adopted to repre- 

sent both the ontology vertex and its corresponding vector. 

In order to obtain an optimal ontology function f : V → 

R , ontology learning algorithms are used by the authors. 

Therefore, the value of | f (v i ) − f (v j ) | is used to determine 

the similarity between two vertices v i and v j . Dimensional- 

ity reduction, i.e., using real number to represent p dimen- 

sion vector is the core of such kind of ontology algorithm. 

In this way, we can regard an ontology function f as a di- 

mensionality reduction operator f : R 

p → R . 

There are many effective methods for getting efficient 

ontology similarity measure or ontology mapping algo- 

rithm. They have been studied in terms of ontology func- 

tion. Moreover, the theoretical research of ontology algo- 

rithms has been contributed by several researchers. The 

uniform stability of multi-dividing ontology algorithm and 

the generalization bounds for stable multi-dividing ontol- 

ogy algorithms was put forth by Gao and Xu [6] . A gradi- 

ent learning model for ontology similarity measuring and 

ontology mapping in multi-dividing setting was proposed 

by Gao and Zhu [7] cooperatively. In the setting, the sam- 

ple error was determined in terms of the hypothesis space 

and the ontology dividing operator in which one can sup- 

pose that V is an instance space. 

In this article, we research the influences of ontology 

learning algorithm when two sample vertices are deleted 

from ontology sample set. In next section, we describe 

the detailed notations, definitions and setting of ontol- 

ogy learning problem. And then, the main conclusions are 

drawn in Section 3 . 

2. The notations, definitions and setting of ontology 

learning problem 

Suppose that V is a compact domain in Euclidean 

space and Y is a set of labels. Let μ( v, y ) be an 

unknown probability distribution on Z = V × Y and S = 

{ (v 1 , y 1 ) , . . . , (v n , y n ) } = (v i , y i ) n i =1 
= (z i ) 

n 
i =1 

be an ontology 

sample set consisting of n samples drawn i.i.d. from the 

probability distribution on Z n . The aim of ontology learn- 

ing is to predict an ontology function f S : V → R using the 

empirical ontology data S which evaluates at a new ontol- 

ogy vertex v to predict its corresponding value of y . 

Let L : R 

V × V × R → R be the ontology loss function 

and L ( f, z ) be the value of punishment for fixed ontology 

function f and z = (v , y ) . Throughout our paper, we always 

assume that the loss function L is square ontology loss 

L ( f, z) = ( f (v ) − y ) 2 and there exists M which satisfies 0 ≤
L ( f, z ) ≤ M for any f ∈ F (here F is a hypothesis space in 

ontology setting) and z ∈ Z . Denote l(z) = L ( f, z) for conve- 

nience. Thus l(z) : V × Y → R and we set L = { l( f ) : f ∈ F} 
as the space of ontology loss function. 

The ontology expected error for fixed ontology func- 

tion f , ontology loss function L and a probability distribu- 

tion μ is defined by: R ( f ) = E Z L ( f, z) . When L is square 

ontology loss, we have 

R ( f ) = E Z L ( f, z) = 

∫ 
V,Y 

( f (v ) − y ) 2 dμ(v , y ) 

= E μ| f (v ) − y | 2 . 
However, R ( f ) can’t be calculated directly since μ is un- 

known. In reality, we compute the ontology empirical er- 

ror instead which is presented as ̂ R S ( f ) = 

1 
n 

∑ n 
i =1 L ( f, z i ) . 

In addition, in our square ontology loss setting, it is equal 

to ̂ R S ( f ) = 

1 
n 

∑ n 
i =1 ( f (v i ) − y i ) 

2 = E μn ( f (v ) − y ) 2 , where μn 

is the ontology empirical supported on { v 1 , . . . , v n } which 

means μn = 

∑ n 
i =1 δv i /n and δv i is the vertex evaluation 

functional on v i . 

In what follows, set S i, j as the ontology training set 

from S by deleting two vertices v i and v j (1 ≤ i < j ≤ n ). 

For our ontology learning setting, the functions f S and f S i, j 

are the minimizers of ̂ R S ( f ) and 

̂ R S i, j ( f ) , respectively. The 

notations E S and P S are used to express the expectation 

and the probability on the ontology training set S which is 

drawn i.i.d, according to probability distribution on Z n . 

An ontology algorithm is called symmetric if the 

optimal ontology function can’t be changed when the 

elements in training set S are re-arranged. Given an on- 

tology training set S and an ontology function space F , 

the almost ontology learning algorithm is defined as a 

symmetric procedure which chooses an ontology function 

f ε 
E 

S 
that minimizes the ontology empirical risk over all 

ontology functions f ∈ F , we infer ̂ R S ( f ε 
E 

S ) ≤ inf 
f∈F ̂

 R S ( f ) + ε E , (1) 

where ε E > 0. 

An ontology learning map is called (universally, weakly) 

consistent if for any positive number ε c > 0, we have 

lim 

n →∞ 

sup 

μ
P { R ( f S ) > inf 

f∈F 
R ( f ) + ε c } = 0 . 

The consistency is universal implies that the inequality 

above is established with respect to the set of any measure 

on Z , whereas weak consistency means only convergence 

in probability and strong consistency requires almost sure 

convergence. 

Let F be any class of functions. F is a (weak) uniform 

Glivenko–Cantelli (in short, uGC) class if for any positive 

number ε, 

lim 

n →∞ 

sup 

μ
P { sup 

f∈F 
| E μn 

f − E μ f | > ε} = 0 . 

When comes to the ontology loss functions l , the definition 

implies that for all distributions μ there exist ε n and δε n ,n 
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