Generalization of bi-Hamiltonian systems in (3 + 1) dimension, possessing partner symmetries

D. Yazicı
Department of Physics, Ylldiz Technical University, Esenler, 34220 Istanbul, Turkey

A R TICLE INFO

Article history:

Received 4 April 2015
Received in revised form 1 June 2015
Accepted 3 July 2015
Available online 9 July 2015

MSC:

35Q75
83 C 15

Keywords:

Bi-Hamiltonian systems
Lax pair
Symplectic structure
Recursion
Partner symmetry

Abstract

We study bi-Hamiltonian structure of a general equation which possesses partner symmetries. The general form of such second-order PDEs with four independent variables was determined in the paper Sheftel and Malykh (2009) on a classification of second-order PDEs which have this property. We apply Dirac's theory of constraints to this general equation. We formulate the equation in a two-component form and present the Lax pair of Olver-Ibragimov-Shabat type. Under some constraints imposed on constant coefficients of this equation, we obtain its bi-Hamiltonian structure. Therefore, by Magri's theorem it is a completely integrable bi-Hamiltonian system in (3+1) dimensions. We also showed that with suitable choices of constant coefficients the equation is reduced to the well known integrable bi-Hamiltonian systems in $(3+1)$ dimension.

© 2016 Published by Elsevier B.V.

1. Introduction

We discover bi-Hamiltonian structure of a general scalar second-order PDE with four independent variables which possesses partner symmetries. The definition of partner symmetries [1] requires two conditions to be satisfied:

1. The symmetry condition for a given PDE (determining symmetries of the PDE) has the form of a two-dimensional divergence that implies the existence of a unique potential for each symmetry.
2. The potential of each symmetry is itself a symmetry of the PDE called partner symmetry for the original symmetry.

Both symmetries are related by a nonlocal recursion relation so that at least one of them is a nonlocal symmetry.
Sheftel and Malykh [2] have demonstrated how to use partner symmetries for obtaining noninvariant solutions of heavenly equations of Plebañski that govern heavenly gravitational metrics. Also, they presented a classification of scalar second order partial differential equations (PDEs) with four variables that possess partner symmetries and contain only second derivative of the unknown [1]. The general form of a second-order PDE with four independent variables x, y, z, t that possesses partner symmetries and contains only second derivatives of the unknown u reads

$$
\begin{align*}
F= & a_{1}\left(u_{t y} u_{x z}-u_{t z} u_{x y}\right)+a_{2}\left(u_{t x} u_{t y}-u_{t t} u_{x y}\right)+a_{3}\left(u_{t y} u_{x x}-u_{t x} u_{x y}\right) \\
& +a_{4}\left(u_{t x} u_{t z}-u_{t t} u_{x z}\right)+a_{5}\left(u_{t z} u_{x x}-u_{t x} u_{x z}\right)+a_{6}\left(u_{t t} u_{x x}-u_{t x}^{2}\right) \\
& +b_{1} u_{x y}+b_{2} u_{t y}+b_{3} u_{x z}+b_{4} u_{t z}+b_{5} u_{t t}+2 b_{6} u_{t x}+b_{7} u_{x x}+b_{0}=0, \tag{1.1}
\end{align*}
$$

[^0]where a_{i} and b_{i} are arbitrary constants. Partner symmetries, that make it possible to obtain noninvariant solutions of PDEs of the form (1.1) are generated by the recursion relation:
\[

$$
\begin{align*}
\tilde{\varphi}_{t}= & -\left(a_{2} u_{t y}+a_{4} u_{t z}-a_{6} u_{t x}+b_{6}-\omega_{0}\right) \varphi_{t}-\left(a_{3} u_{t y}+a_{5} u_{t z}+a_{6} u_{t t}+b_{7}\right) \varphi_{x} \\
& +\left(a_{1} u_{t z}+a_{2} u_{t t}+a_{3} u_{t x}-b_{1}\right) \varphi_{y}+\left(-a_{1} u_{t y}+a_{4} u_{t t}+a_{5} u_{t x}-b_{3}\right) \varphi_{z}, \tag{1.2}\\
\tilde{\varphi}_{x}= & -\left(a_{2} u_{x y}+a_{4} u_{x z}-a_{6} u_{x x}-b_{5}\right) \varphi_{t}-\left(a_{3} u_{x y}+a_{5} u_{x z}+a_{6} u_{t x}-b_{6}-\omega_{0}\right) \varphi_{x} \\
& +\left(a_{1} u_{x z}+a_{2} u_{t x}+a_{3} u_{x x}+b_{2}\right) \varphi_{y}+\left(-a_{1} u_{x y}+a_{4} u_{t x}+a_{5} u_{x x}+b_{4}\right) \varphi_{z},
\end{align*}
$$
\]

where φ and $\tilde{\varphi}$ are symmetry characteristics [3] and ω_{0} is a constant. In (1.1) and (1.2) subscripts denote partial derivatives of u, e.g $u_{t x}=\partial^{2} u / \partial t \partial x, u_{x x}=\partial^{2} u / \partial x^{2}, \ldots$ The transformation (1.2) maps any symmetry φ of Eq. (1.1) to its partner symmetry $\tilde{\varphi}$.

In this paper, we study bi-Hamiltonian structure of PDEs of the general form (1.1). Some particular cases of Eq. (1.1) yield bi-Hamiltonian systems in $(3+1)$ dimensions which had been studied in the last decade [4-7]. In order to discuss its Hamiltonian structure we shall single out an independent variable t in (1.1) to play the role of 'time' and express the general equation as a pair of first-order nonlinear evaluation equations. Before doing this, to avoid complications we will use the following short-hand notation:

$$
\begin{align*}
& c_{1}=a_{3} u_{x y}+a_{5} u_{x z}+a_{6} v_{x}-b_{6}-\omega_{0} \\
& c_{2}=a_{1} u_{x z}+a_{2} v_{x}+a_{3} u_{x x}+b_{2} \\
& c_{3}=-a_{1} u_{x y}+a_{4} v_{x}+a_{5} u_{x x}+b_{4} \\
& c_{4}=a_{2} u_{x y}+a_{4} u_{x z}-a_{6} u_{x x}-b_{5} \\
& c_{5}=a_{3} v_{y}+a_{5} v_{z}+a_{6} Q+b_{7} \\
& c_{6}=a_{1} v_{z}+a_{2} Q+a_{3} v_{x}-b_{1} \tag{1.3}\\
& c_{7}=-a_{1} v_{y}+a_{4} Q+a_{5} v_{x}-b_{3} \\
& c_{8}=a_{2} v_{y}+a_{4} v_{z}-a_{6} v_{x}+b_{0}-\omega_{0} \\
& c_{9}=a_{6} v_{x x}-a_{2} v_{x y}-a_{4} v_{x z} \\
& c_{10}=b_{1} u_{x y}+b_{3} u_{x z}+b_{7} u_{x x}+b_{0}
\end{align*}
$$

where Q appearing in c_{5}, c_{6} and c_{7} is given in (1.4). We introduce $u_{t}=v$ as a second unknown and Eq. (1.1), with the use of (1.3), can be written in the two-component form as follow:

$$
\begin{equation*}
u_{t}=v, \quad v_{t}=\frac{1}{c_{4}}\left[\left(b_{6}-\omega_{0}-c_{1}\right) v_{x}+c_{2} v_{y}+c_{3} v_{z}+c_{10}\right] \equiv Q \tag{1.4}
\end{equation*}
$$

From now on, in all calculations we will use the short-hand notation (1.3).
In Section 2, we present the first Hamiltonian structure of this system of equations. We start with a degenerate Lagrangian and construct its Dirac bracket [8] to find a Hamiltonian operator.

In Section 3, we construct a recursion operator in a matrix form using results of [1]. Recursion operator and the operator of the symmetry condition form a Lax pair for the two-component system.

In Section 4, we give explicitly the second Hamiltonian structure which shows that Eq. (1.4) is an integrable biHamiltonian system under some constraints on the constant coefficients.

In Section 5, we show that under a suitable choice of constant coefficients a_{i} and b_{i}, the general system (1.1) is reduced to known bi-Hamiltonian systems given in [4-7,9].

In Section 6, we prove that Hamiltonian operators are compatible and satisfy Jacobi identity by using Olver's method [3].

2. Lagrangian and first Hamiltonian structure

There is a systematic way to derive the first Hamiltonian structure of (1.4). This method is used for Plebañski's heavenly equations [4], Husain and mixed heavenly [6] equations, complex Monge-Ampère [5] and asymmetric heavenly equations [7]. We shall now apply it to the evolution system (1.4).

We start with the degenerate Lagrangian density for (1.4) given by

$$
\begin{align*}
L= & \left(v u_{t}-\frac{v^{2}}{2}\right)\left(a_{6} u_{x x}-a_{2} u_{x y}-a_{4} u_{x z}-b_{5}\right)-\frac{u_{t}}{3}\left(a_{1} u_{z}+a_{3} u_{x}\right) u_{x y} \\
& -\frac{u_{t}}{3}\left(a_{5} u_{x}-a_{1} u_{y}\right) u_{x z}+\frac{u_{t}}{3}\left(a_{3} u_{y}+a_{5} u_{z}\right) u_{x x} \\
& +\frac{u_{t}}{2}\left(b_{2} u_{y}+b_{4} u_{z}+2 b_{6} u_{x}\right)+\frac{1}{2}\left(b_{7} u_{x}+b_{1} u_{y}+b_{3} u_{z}\right) u_{x}-b_{0} u . \tag{2.1}
\end{align*}
$$

https://daneshyari.com/en/article/1895452

Download Persian Version
https://daneshyari.com/article/1895452

Daneshyari.com

[^0]: E-mail address: yazici@yildiz.edu.tr.

