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a b s t r a c t

We study bi-Hamiltonian structure of a general equation which possesses partner symme-
tries. The general form of such second-order PDEs with four independent variables was
determined in the paper Sheftel and Malykh (2009) on a classification of second-order
PDEswhich have this property.We apply Dirac’s theory of constraints to this general equa-
tion. We formulate the equation in a two-component form and present the Lax pair of
Olver–Ibragimov–Shabat type. Under some constraints imposed on constant coefficients
of this equation, we obtain its bi-Hamiltonian structure. Therefore, byMagri’s theorem it is
a completely integrable bi-Hamiltonian system in (3+1) dimensions.We also showed that
with suitable choices of constant coefficients the equation is reduced to the well known in-
tegrable bi-Hamiltonian systems in (3 + 1) dimension.

© 2016 Published by Elsevier B.V.

1. Introduction

We discover bi-Hamiltonian structure of a general scalar second-order PDE with four independent variables which
possesses partner symmetries. The definition of partner symmetries [1] requires two conditions to be satisfied:

1. The symmetry condition for a given PDE (determining symmetries of the PDE) has the form of a two-dimensional
divergence that implies the existence of a unique potential for each symmetry.

2. The potential of each symmetry is itself a symmetry of the PDE called partner symmetry for the original symmetry.

Both symmetries are related by a nonlocal recursion relation so that at least one of them is a nonlocal symmetry.
Sheftel and Malykh [2] have demonstrated how to use partner symmetries for obtaining noninvariant solutions of

heavenly equations of Plebañski that govern heavenly gravitational metrics. Also, they presented a classification of scalar
second order partial differential equations (PDEs) with four variables that possess partner symmetries and contain only
second derivative of the unknown [1]. The general form of a second-order PDE with four independent variables x, y, z, t
that possesses partner symmetries and contains only second derivatives of the unknown u reads

F = a1(utyuxz − utzuxy)+ a2(utxuty − uttuxy)+ a3(utyuxx − utxuxy)

+ a4(utxutz − uttuxz)+ a5(utzuxx − utxuxz)+ a6(uttuxx − u2
tx)

+ b1uxy + b2uty + b3uxz + b4utz + b5utt + 2b6utx + b7uxx + b0 = 0, (1.1)
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where ai and bi are arbitrary constants. Partner symmetries, that make it possible to obtain noninvariant solutions of PDEs
of the form (1.1) are generated by the recursion relation:

ϕ̃t = −

a2uty + a4utz − a6utx + b6 − ω0


ϕt −


a3uty + a5utz + a6utt + b7


ϕx

+

a1utz + a2utt + a3utx − b1


ϕy +


−a1uty + a4utt + a5utx − b3


ϕz, (1.2)

ϕ̃x = −

a2uxy + a4uxz − a6uxx − b5


ϕt −


a3uxy + a5uxz + a6utx − b6 − ω0


ϕx

+

a1uxz + a2utx + a3uxx + b2


ϕy +


−a1uxy + a4utx + a5uxx + b4


ϕz,

where ϕ and ϕ̃ are symmetry characteristics [3] and ω0 is a constant. In (1.1) and (1.2) subscripts denote partial derivatives
of u, e.g utx = ∂2u/∂t∂x, uxx = ∂2u/∂x2, . . . The transformation (1.2) maps any symmetry ϕ of Eq. (1.1) to its partner
symmetry ϕ̃.

In this paper, we study bi-Hamiltonian structure of PDEs of the general form (1.1). Some particular cases of Eq. (1.1)
yield bi-Hamiltonian systems in (3 + 1) dimensions which had been studied in the last decade [4–7]. In order to discuss its
Hamiltonian structure we shall single out an independent variable t in (1.1) to play the role of ‘time’ and express the general
equation as a pair of first-order nonlinear evaluation equations. Before doing this, to avoid complications we will use the
following short-hand notation:

c1 = a3uxy + a5uxz + a6vx − b6 − ω0

c2 = a1uxz + a2vx + a3uxx + b2
c3 = −a1uxy + a4vx + a5uxx + b4
c4 = a2uxy + a4uxz − a6uxx − b5
c5 = a3vy + a5vz + a6Q + b7
c6 = a1vz + a2Q + a3vx − b1
c7 = −a1vy + a4Q + a5vx − b3
c8 = a2vy + a4vz − a6vx + b0 − ω0

c9 = a6vxx − a2vxy − a4vxz
c10 = b1uxy + b3uxz + b7uxx + b0

(1.3)

where Q appearing in c5, c6 and c7 is given in (1.4). We introduce ut = v as a second unknown and Eq. (1.1), with the use of
(1.3), can be written in the two-component form as follow:

ut = v, vt =
1
c4

[(b6 − ω0 − c1)vx + c2vy + c3vz + c10] ≡ Q . (1.4)

From now on, in all calculations we will use the short-hand notation (1.3).
In Section 2,we present the first Hamiltonian structure of this systemof equations.We startwith a degenerate Lagrangian

and construct its Dirac bracket [8] to find a Hamiltonian operator.
In Section 3, we construct a recursion operator in a matrix form using results of [1]. Recursion operator and the operator

of the symmetry condition form a Lax pair for the two-component system.
In Section 4, we give explicitly the second Hamiltonian structure which shows that Eq. (1.4) is an integrable bi-

Hamiltonian system under some constraints on the constant coefficients.
In Section 5, we show that under a suitable choice of constant coefficients ai and bi, the general system (1.1) is reduced

to known bi-Hamiltonian systems given in [4–7,9].
In Section 6, we prove that Hamiltonian operators are compatible and satisfy Jacobi identity by using Olver’s method [3].

2. Lagrangian and first Hamiltonian structure

There is a systematic way to derive the first Hamiltonian structure of (1.4). This method is used for Plebañski’s
heavenly equations [4], Husain and mixed heavenly [6] equations, complex Monge–Ampère [5] and asymmetric heavenly
equations [7]. We shall now apply it to the evolution system (1.4).

We start with the degenerate Lagrangian density for (1.4) given by

L =


vut −

v2

2


(a6uxx − a2uxy − a4uxz − b5)−

ut

3
(a1uz + a3ux)uxy

−
ut

3
(a5ux − a1uy)uxz +

ut

3
(a3uy + a5uz)uxx

+
ut

2
(b2uy + b4uz + 2b6ux)+

1
2
(b7ux + b1uy + b3uz)ux − b0u. (2.1)
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