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A CHARACTERIZATION OF FINITE DIMENSIONAL
NILPOTENT FILIPPOV ALGEBRAS

H. DARABI, F. SAEEDI, AND M. ESHRATI

Abstract. Let A be a nilpotent Filippov (n-Lie) algebra of dimension d and

put s(A) =
(d−1

n

)
+ n − 1 − dimM(A) and t(A) =

(d
n

)
− dimM(A), where

M(A) denotes the multiplier of A. The aim of this paper is to classify all
nilpotent n-Lie algebras A for which s(A) = 0, 1 or 2, and applying it in order

to determine all nilpotent n-Lie algebras A satisfying 0 ≤ t(A) ≤ 8.

1. Introduction

In 1985, Filippov [12] introduced the concept of n-Lie (Filippov) algebras, as
an n-ary multilinear and skew-symmetric operation [x1, . . . , xn], which satisfies the
following generalized Jacobi identity

[[x1, . . . , xn], y2, . . . , yn] =
n∑

i=1

[x1, . . . , [xi, y2, . . . , yn], . . . , xn]].

Clearly, such an algebra becomes an ordinary Lie algebra when n = 2. Beside pre-
senting many examples of n-Lie algebras, he also extended the notions of simplicity
and nilpotency and determined all (n + 1)-dimensional n-Lie algebras over an al-
gebraically closed field of characteristic zero. There are a great deal of difference
between n-Lie algebras and the ordinary Lie algebras. For example, the famous
Jacobson’s theorem and the root theory of describing semi-simple Lie algebras are
not valid any more when studying n-Lie algebras. The study of n-Lie algebras is
important since it is related to geometry and physics. Among other results, n-Lie
algebras are classified in some cases. For example, Bai et. al in [3] classify all n-Lie
algebras of dimension n + 1 over a field of characteristic 2. Also, they show that
there is no simple n-Lie algebra of dimension n + 2. (see [1], [6], [11], [13], [18] and
[19] for more information on the Filippov algebras).

In 1986, Kasymov [16] introduced the notion of nilpotency of an n-Lie algebra
as follows:

An n-Lie algebra A is nilpotent if As = 0 for some non-negative integer s,
where Ai is defined inductively by A1 = A and Ai+1 = [Ai, A, . . . , A]. The ideal
A2 = [A, . . . , A] is called the derived subalgebra of A. The center of A is defined by

Z(A) = {x ∈ A : [x,A, . . . , A] = 0}.
Let Z0(A) = ⟨0⟩. Then the ith center of A is defined inductively by

Zi(A)
Zi−1(A)

= Z

(
A

Zi−1(A)

)
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