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The influence of perturbation on traveling wave solutions of the perturbed Klein-Gordon
equation is studied by applying the bifurcation method and qualitative theory of dynamical
systems. All possible approximate damped oscillatory solutions for this equation are
obtained by using undetermined coefficient method. Error estimates indicate that the

approximate solutions are meaningful. The results of numerical simulations also establish

our analysis.
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1. Introduction

The Klein-Gordon equation is a very important equa-
tion in the field of physics, especially in quantum mechan-
ics [1-10]. It represents the equation of motion of a
quantum scalar or a pseudo-scalar field, which is a field
whose quanta are spinless particles. The Klein-Gordon
equation with cubic nonlinearity reads in the form

U — Ky + au — bu® = 0, (1)

where a, b and k are nonzero real constants. Eq. (1) describes
the propagation of dislocations within crystals, the Bloch
wall motion of magnetic crystals, the propagation of a “splay
wave” along a lied membrane, the unitary theory for elemen-
tary particles and the propagation of magnetic flux on a
Josephson line, etc. [1]. There have been many studies on
traveling wave solutions of Eq. (1) [7-10]. The solutions
obtained are of interest in nuclear physics, solid state phys-
ics, high-energy physics, nonlinear optics and many more.
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Recently, the study of perturbed nonlinear equations
has attracted much attention. Zhang studied the perturbed
Klein-Gordon equation with quadratic nonlinearity in the
(1 +1)-dimension without local inductance and dissipation
effect, and obtained exact traveling wave solutions by
employing the auxiliary ordinary differential equation
[11]. Z.Y. Zhang et al. also considered the perturbed nonlin-
ear Schrodinger’s equation with Kerr law nonlinearity.
They then constructed some new exact solutions for the
equation by using various different methods, such as the
modified mapping method and the extended mapping
method [12], the modified trigonometric function series
method [13], the modified (G'/G)-expansion method [14],
Jacobi elliptic function expansion method [15] and the
dynamical system approach [16,17]. Sassaman and Biswas
[18] investigated the perturbed phi-four equation

Uy — KUy — U+ 13 = €R, (2)

where R = ol + Bu; + YUy + Uy + AUy + Glig + DUy, R TEP-
resents the perturbation terms and € is the perturbation
coefficient. They gave the adiabatic variation of the soliton
velocity of Eq. (2).

Because the perturbation inevitably arises in the con-
text of long Josephson junction, it is meaningful to study
the following perturbed Klein—-Gordon equation
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Uy — KUy + au — bu’ = e(ow; + puy), 3)

where € > 0 shows that the system has perturbation. The
perturbation term due to o accounts for dissipative losses
in Josephson junction theory due to tunneling of normal
electrons across the dielectric barrier, while the perturba-
tion term due to S is generated by a small inhomogenous
part of the local inductance [18].

In this paper, we study the perturbation effect on travel-
ing wave solutions of Eq. (3). This paper is organized as fol-
lows. In Section 2, we carry out qualitative analysis for the
dynamic system corresponding to Eq. (3). Existence of bell
solitary wave solution, kink solitary wave solutions and
oscillatory traveling wave solutions of Eq. (3) are given. In
Section 3, we study the effect of perturbation on the travel-
ing wave solutions of Eq. (3). In Section 4, approximate
damped oscillatory solutions are obtained by using unde-
termined coefficient method. In Section 5, we give error
estimates for the approximate damped oscillatory solutions
gotten in Section 4. Finally, we give some numerical simu-
lations for special cases of Eq. (3) to support our analytical
results of oscillatory traveling wave solutions obtained in
the above sections. Through the investigation in this paper,
we can comprehend the influence of perturbation term on
traveling wave solutions of Eq. (3).

2. Existence of bell solitary wave solution, kink solitary
wave solutions and oscillatory traveling wave solutions
of Eq. (3)

Assume that Eq. (3) has traveling wave solution in the
form

U(X, t) = u(é)z é =X—- At (4)
where / is the propagation speed of a wave. Substituting
(4) into Eq. (3) yields
(e —P)e .. a b
¢ u() -
2l U 2l © P2 -

(21K, (5)

u//(é) +

Thus, to study the existence of bounded traveling wave
solutions of Eq. (3) is equivalent to study the existence of
bounded solutions of Eq. (5).

Let u/(¢) =y, then Eq. (5) reduces to the following pla-
nar dynamic system

¢ =y=2Puy), ©)
% :*/fﬁzy 7,{2”

:Q(uvy)'

_ (azhje by Bendixson-Dulac’s crite-

Owing to 9 + 9% = — 3=~

rion [19], we have the following proposition for system (6).

Proposition 1. If (o — p)e # 0, then system (6) does not
have any closed orbit or singular closed orbit with finite
number of singular points on (u,y) phase plane. Further, there
exists no periodic traveling wave solution or bell solitary wave
solution of Eq. (3) as (Jo — B)e # 0.

In the (u,y) plane, the number of bounded singularities
in system (6) depends on the number of solutions in equa-
tion of

a b
T
For the sake of simplification, we only consider the case
when ab >0 and (i — f)(4% — k*) > 0 throughout the
paper. Other cases can be discussed similarly. Clearly, sys-
tem (6) has three singular points under the condition
ab>0. Denote them by 0(0,0),P_(—+/a/b,0) and
P+(mv O)
Now, we study the types of singular points of (6) by the
theory of planar dynamical systems [20,21].

u =0 (7)

2.1. Finite singular points of the system (6)

2.1.1. In the case of e =0
In this case, system (6) is a Hamiltonian system with
Hamiltonian function

a 2 b A
202K 42—k

1
H(uy) = Zy +

It is easy to obtain the types of singular points of (6) as
follows:

(1) If a(2? ) < 0, then O is a saddle point; P, and P_
are centers.

(2) If a(2 — k*) > 0, then O is a center; P. and P_ are
saddle points.

2.1.2. In the case of € > 0.
Set the Jacobi matrix of the linearized system of system
(6) at singular points O and P. are

0 1
](O) =\ __a _(Ge=pe |
212 21

and

0 1
JP) =1 2 Gape |
2k 212

respectively. To relate conveniently, let

Ao = (o — B)* €% — 4a(i2 — k*),

A= (Jo— B)*€® +8a(i2 — ).

(1) Ifa(2? - kz) < 0, then O is a saddle point, P, ,P_ are
stable node points as A >0, and P, ,P_ are stable
focus points as A < 0.

(2) Ifa(2? - I<2) > 0, then P, ,P_ are saddle points, O is a
stable node point as Ay > 0, and O is a stable focus
point as Ag < 0.

2.2. Infinite singular points of the system (6)

Applying Poincaré transformation to analyze singular
points at infinity of system (6), it is clear that there exist
a couple of singular points at infinity E; and E, on y axis,
meanwhile, the circumference of Poincaré disk is orbits.
We can also prove the following results.
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