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We focus on time varying multifractality in time series and introduce a multifractal regime
detecting method (MRDM) adopting a nonparametric statistical test for multifractality
based on generalized Hurst exponent (GHE). MRDM is a practical method to discriminate
multifractal regimes in a time series of any length using a moving time window approach
with the adjustable time window size and the moving interval. MRDM is applied to simu-
lations consisting of both multifractal and monofractal regimes, and the results confirm its
validity. Using MRDM, we identify multifractal regimes in the time series of Korea compos-
ite stock price index (KOSPI) from 1990 through 2012 and observe the distinct stylized
facts of the KOSPI return values in multifractal regimes such as the heavy tail distribution,
high kurtosis, and the long memory in volatility. Surrogate tests based on improved ampli-
tude adjusted Fourier transformation (IAAFT) algorithm, normal distribution, and general-
ized student t distribution are performed for the validation of MDRM, and the probable

causes of multifractality in the KOSPI series are discussed.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Financial time series have various statistical stylized
facts which are not expressed using Gaussian models.
Some examples are as follow. Returns of financial asset
have the fatter tail distribution than the Gaussian noise
and show frequent extreme jumps. Volatility of returns is
heteroscedastic, long-range dependent, and likely to be
clustered. Multifractality is one of these stylized facts
observed in many financial time series.

The multifractality is rather a macroscopic concept, but
there exist the time ranges showing strong multifractal
properties in financial time series. This implies that a time
series having multifractality as a whole can be segmented
into the multifractal regimes and the non-identifiable
regimes inside of the time series in microscopic view.
Many financial time series reflecting economic cycles,
growth and recession, exhibit the tendency of time-varying
multifractality.
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Mandelbrot [23] developed a fractal theory measuring
the complexity of a fractal structure by defining the fractal
dimension distinct from the conventional Euclidean
dimension. The fractal structure having multiple dimen-
sions is called “multifractal”, while a fractal structure with
a single dimension is called “monofractal”.

The multifractality in a time series can be observed by
the Hurst exponent estimation. Peng et al. [32] and Kantel-
hardt et al. [16] proposed a multifractal detrended fluctua-
tion analysis (MF-DFA), which can reliably determines the
multifractal scaling behavior of nonstationary time series,
for the estimation of the exponent. Another method is
called the generalized Hurst exponent (GHE) approach.
The gth order moments of the distribution of increments
of time series value are used to estimate the exponent
[1,10].

Kantelhardt et al. [16] distinguished two sources of
multifractality in time series: the properties of probability
density function (PDF) for the values in time series,
especially its heavy tail thickness (fat tail) and long range
correlation of fluctuations in time series. Kumar and Deo
[17] pointed out that both the properties of PDF and long


http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2014.11.006&domain=pdf
http://dx.doi.org/10.1016/j.chaos.2014.11.006
mailto:changw@snu.ac.kr
http://dx.doi.org/10.1016/j.chaos.2014.11.006
http://www.sciencedirect.com/science/journal/09600779
http://www.elsevier.com/locate/chaos

118 H. Lee, W. Chang/ Chaos, Solitons & Fractals 70 (2015) 117-129

range correlation give rise to the multifractality in Indian
financial market. While Zunino et al. [43] and Barunik
et al. [5] mentioned that heavy tail distribution is the main
cause of multifractality, Kwapien et al. [18], Drozdz et al.
[12], Oh et al. [28] and Zhou [41] claimed that multifractal-
ity in time series is mainly due to the long range correla-
tion property of time series. Drozdz et al. [12] showed
that a uncorrelated time series of short length (less than
10° data points) can be misjudged as a multifractal series,
and Drozdz et al. [12] and Zhou [41] stated that the prop-
erties of PDF have an impact on the multifractality of time
series only when the time series possesses long range
correlation.

Some overview of a series of research applying scaling
property to model financial market is as follows. Bacry
et al. [2,3] introduced multifractal random walks (MRW)
with stationary increments and continuous dilation invari-
ance. Gorski et al. [13] studied the complicated multifractal
nature of stock market dynamics. Calvet and Fisher [6-9]
have done important work in multifractality in asset
returns including volatility forecasting, Markov switching
multifractal, and multifractal model of asset returns
(MMAR). Lux [21] proposed a generalized method of
moments approach for estimating multifractal parameters
in Markov-switching multifractal model (MSM). Liu et al.
[20] analyzed the multi-scaling properties of financial data
using MSM. Oswiecimka et al. [31] focused on the Lux
extension to MMAR and applied the model to study the
dynamics of the Polish stock market.

OSwiecimka et al. [29] applied MF-DFA to the high fre-
quency stock market data. Kwapien et al. [18] pointed out
that nonlinear temporal correlations weigh more than the
fat-tailed probability distribution as a contributor to the
multifractal dynamics of stock return. Oswiecimka et al.
[30] performed a comparative study for the detection of
multifractality between MF-DFA and wavelet transform
modulus maxima (WTMM) method. Drozdz et al. [12]
applied both MF-DFA and WTMM method to detect multi-
fractality in time series, and claimed that the genuine mul-
tifractality results from temporal correlation. Zunino et al.
[42] applied MF-DFA to developed and emerging stock
markets and introduced the multifractality degree to
assess stages of stock market development. Zhou [41]
decomposed the multifractality into three components
caused by linear correlation, nonlinear correlation, and
the fat-tailed probability density function (PDF), and main-
tained that the fat-tailed PDF have an impact on the multi-
fractality with the presence of nonlinear correlation.
Kwapien and Drozdz [19] provide a general overview of
multifractality in complex systems. Sudrez-Garcia and
Gomez-Ullate [36] applied MF-DFA to a multifractal and
correlation analysis of the high-frequency returns of the
IBEX 35 index of Madrid stock exchange.

Among abundant studies on multifractality in financial
time series, the research on a statistical multifractality test
is relatively small. Wendt and Abry [38] and Wendt et al.
[39] suggested bootstrap methods to discriminate multi-
fractality for time series of large sample size (2'% or 2'°).
However, their methods may not be applicable to the time
series of small sample size due to the inaccuracy of resam-
pling. Jiang and Zhou [15] performed statistical tests upon

intraday minutely data within individual trading days to
check whether the indexes possess multifractality.

Morales et al. [25,26] suggested that financial time ser-
ies have time varying multifractality. Morales et al. [25]
computed weighted generalized Hurst exponent (WGHE)
over a moving time window and monitored the dynamics
of wGHE during the unstable periods in financial time ser-
ies. Morales et al. [26] identified the time varying multi-
fractal properties, comparing empirical observations of
WGHE with the time series simulated via multifractal ran-
dom walk by Bacry et al. [3]. Sensoy [33,34] studied the
efficiency of stock markets (middle east and north african
stock market and federation of Euro-Asian stock
exchanges, respectively) using GHE over a moving time
window.

In this paper, we introduce a multifractal regime detect-
ing method (MRDM) that identifies multifractal ranges in
the time series through a moving time window. By apply-
ing MRDM to a time series, we can segment the time series
into multifractal and non-identifiable regimes. The multi-
fractality of a time series window is checked and a multi-
fractal regime is detected by rolling the window forward
with a regular interval at a time. MRDM adopts the GHE
approach considering the time varying multifractal prop-
erty and a simple nonparametric statistical test to select
multifractal regimes. MRDM is appropriate to analyze the
time varying multifractality of time series and performs
well in the time series of small sample size. MRDM is
applied to the simulation of multifractal model of asset
returns (MMAR), which is a typical multifractal process,
and the empirical data of Korea composite stock price
index (KOSPI) ranging from 1990 to 2012.

The remainder of this paper is as follows. In Section 2,
stylized facts between the monofractal process and the
multifractal process are compared and a multifractality
test is introduced and validated using the simulation of
monofractal and multifractal processes. In Section 3,
MRDM is introduced and its type 1 and type 2 errors are
measured based on simulation data consisting of fractional
Brownian motion and MMAR. The empirical application of
MRDM to the KOSPI series and the related surrogate test
results are discussed in Section 4, and the summary and
conclusion of this paper are in Section 5.

2. Discrimination of multifractality
A time series, {X(t)}, has the following scale property,
E[|AX-(1)|"] ~ T°@ (1)

where AX.(t) =X(t+71)—X(t) and {(q) is the scaling
function.

The scaling function of fractional Brownian motion
(fBm) has a linear form of {(q) = Hq, where H is the Hurst
exponent, 0<H <1 [27]. Especially, fBm becomes an
ordinary Brownian motion when H =0.5. The fBm, By(t),
is a self similar process and has the following property,

Bu(ct) = c"By(t) for ¢ >0 (2)
When H is larger than 0.5, fBm is long range dependent.
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