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a b s t r a c t

We introduce the holonomy-diffeomorphism algebra, a C∗-algebra generated by flows
of vector fields and the compactly supported smooth functions on a manifold. We show
that the separable representations of the holonomy-diffeomorphism algebra are given
by measurable connections, and that the unitary equivalence of the representations
corresponds to measured gauge equivalence of the measurable connections. We compare
the setup to Loop QuantumGravity and show that the generalized connections found there
are not contained in the spectrum of the holonomy-diffeomorphism algebra in dimensions
higher than one.

This is the second paper of two, where the prequel gives an exposition of a framework
of quantum gravity based on the holonomy-diffeomorphism algebra.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Most fundamental theories of physics have connections among their basic variables, like the standard model of particle
physics and the Ashtekar formulation of general relativity. It is therefore important, especiallywith respect to a quantization
of these theories, to consider functions of connections, i.e. observables, within these theories. Probably themost well known
example of such functions are theWilson loops, i.e. traces of the holonomies of loops along closed paths; but also open paths
have been considered, in particular when the observables have to act on fermions.

One problem we have encountered in our attempt [1] to merge elements of canonical quantum gravity with
noncommutative geometry is that variables like the Wilson loops, and related variables, tend to discretize the underlying
spaces. Therefore in this paper wewill commence the study of an algebra of ‘‘functions’’ of smeared objects in order to avoid
this discretization. More concretely we will study a C∗-algebra generated by flows of vector fields on a manifold M and
the smooth compactly supported functions onM . Flows of vector fields constitute a natural notion of families of paths, and
when evaluated on a connection in the spin-bundle S, naturally gives an operator on the spinors, i.e. on L2(M, S), and not
like a path just acting on one point in M . The holonomy-diffeomorphism algebra is defined as the C∗-algebra generated by
the flows and the smooth functionwith norm given by the supremumover all the smooth connections. In this setup, smooth
connections are viewed as representations of the holonomy-diffeomorphism algebra. It is the holonomy-diffeomorphism
algebra which is our candidate for an algebra of observables.

One test to see if a given algebra of observables is suitable is to look at the spectrum of the algebra, i.e. the space of
irreducible representations modulo unitary equivalence. The main result in this paper is that all non-degenerate separable
representations of the holonomy-diffeomorphism are given by so called measurable connections. These are objects, which
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are similar to the generalized connections encountered in Loop QuantumGravity (LQG), see [2], but which take themeasure
class of the Riemannian metrics into account instead of the measure class of the counting measure. The measurable
connections of course contain the smooth connections.

This means that the generalized connections, which dominate the spectrum found in LQG, are excluded from the
spectrum of the holonomy-diffeomorphism algebra. We believe this is a very significant result since several open problems
in LQG can be traced back to the singular nature of the generalized connections: for instance the non-separable kinematic
Hilbert space, the lack of weakly continuous operators and the ensuing inability to construct an off-shell constraint
algebra (see [3]). It is therefore highly desirable to find a natural algebra of observables, which avoids the generalized
connections and has a spectrum, which is as close as possible to the classical configurations space. The algebra of holonomy-
diffeomorphisms meets this challenge and is furthermore, from a physical point of view, a natural choice of algebra since it
simply encodes how ‘‘stuff’’ is moved around on a spatial manifold.

This paper is the second of two papers. Where its prequel [4] is concerned with an exposition of a mathematical
framework of quantum gravity based on the holonomy-diffeomorphism algebra this paper is solely concerned with the
mathematical analysis of this algebra.

The paper is organized as follows:
In Section 2 we define the holonomy-diffeomorphism algebra.
In Section 3 we define the flow algebra. This algebra is constructed as a quotient of the cross product of the group

generated the flows of the vector fields and the compactly supported smooth functions on the manifold. The ideal in this
cross product, which is divided out, is the relation of local reparametrization. In particular the representations defining the
holonomy-diffeomorphism algebra also give representations of the flow algebra. We show that separable non degenerate
representations of this flow algebra are given by so called measurable connections, and show the unitary equivalence
between these measurable connection is given by measurable gauge equivalence.

In Section 4 we compare our setup with the LQG setup. The generalized connections appearing in LQG also give rise to
representations of the flow algebra, however non-separable representations.We show that the generalized connections can
be obtained as the representations of a discretized version of the flow algebra.

In Section 5 we study the properties of the representations of the holonomy-diffeomorphism algebra given by smooth
connections. In particular we show that a connection is irreducible if and only if the corresponding representation of the
holonomy-diffeomorphism algebra is irreducible, and give some structure of the separable part of the spectrum. In the
second part of Section 5 we show that if the dimension of the manifold is bigger than 1 the representations defined in
Section 4 coming fromgeneralized connections are not contained in the spectrumof the holonomy-diffeomorphism algebra.
We do, however, not know if there are other non-separable representations contained in the spectrum of the holonomy-
diffeomorphism algebra.

2. The holonomy-diffeomorphism algebra

LetM be a connectedmanifold and S a vector bundle overM . We assume that S is equippedwith a fiber wise metric. This
metric ensures that we have a Hilbert space L2(M,Ω

1
2 ⊗ S), whereΩ

1
2 denotes the bundle of half densities on M . Given a

diffeomorphismφ : M → M , this acts unitarily on L2(M,Ω
1
2 ) via the pullback of forms.Wedenote the pullback ofφwithφ∗.

Let X be a vector field on M , which can be exponentiated, and let ∇ be a connection on S. Denote by t → etX the
corresponding flow. Givenm ∈ M let γ be the curve

γ (t) = e(1−t)X (e1X (m))

running from e1X (m) to m. We define the operator

eX
∇

: L2(M,Ω
1
2 ⊗ S) → L2(M,Ω

1
2 ⊗ S)

in the following way:
Let ξ ∈ L2(M,Ω

1
2 ⊗ S) be locally over (e1X (m)) of the form


i ωi ⊗ si, where ωi’s are elements inΩ

1
2 and si a section in

S. The value of (eX
∇
)(ξ) in the pointm is given as

i

((e1X )∗(ωi)(m))⊗ (Hol(γ ,∇)si(e1X (m))),

where Hol(γ ,∇) denotes the holonomy of ∇ along γ . If the connection ∇ is unitary with respect to the metric on S, then
eX
∇
is a unitary operator.
If we are given a system of unitary connections A we define an operator valued function over A via

A ∋ ∇ → eX
∇
,

and denote this by eX . Denote by F (A,B(L2(M,Ω
1
2 ⊗ S))) the bounded operator valued functions over A. This forms a

C∗-algebra with the norm

∥Ψ ∥ = sup
∇∈A

{∥Ψ (∇)∥}, Ψ ∈ F (A,B(L2(M,Ω
1
2 ⊗ S))).
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