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a b s t r a c t

We describe a proof of M.T. Anderson’s result (Anderson, 2000) on the rigidity of complete
stationary initial data for the Einstein vacuum equations in spacetime dimension 3 + 1,
under an extra assumption on the norm of the stationary Killing vector field. The argument
only involves basic comparison geometry along with some Bochner–Weitzenböck formula
techniques. We also discuss on the possibility to extend these techniques to higher
dimensions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In General Relativity, it is a natural task to try and classify spacetime solutions of the Einstein equations under geometric
requirements. Many basic questions are still wide open, even in the case of the vacuum Einstein equations where the Ricci
curvature tensor of the spacetimemetric vanishes. However, significant progress has been done in particular cases, typically
in presence of isometries. Among the simplest examples comes the study of spherically symmetric, Ricci-flat spacetimes in
dimension 3+ 1. The Birkhoff theorem asserts that such spacetimes are locally isometric to one of the maximally extended
Schwarzschild spacetimes[1].

In this note, we restrict our attention to the class of spacetimes that are invariant under isometries in the time-direction.
More precisely, we are interested here in spacetimes (N , γ ), solutions of the Einstein equations, in the special case of
vanishing energy–momentum tensor and cosmological constant (hence Ricci-flat), which admit a timelike Killing vector
field ξ . In order to avoid pathologies, we moreover assume that the orbits of this vector field are diffeomorphic to R, and
that no closed timelike curves occur in the spacetime. Such spacetimes are called stationary; they are of considerable interest
in General Relativity since they are expected to describe the final state of the gravitational collapse of a star into a black hole.
We refer the interested reader to [2] for a survey on stationary spacetimes.

A simple, but fundamental class of such spacetimes is the class of static spacetimes. These are stationary spacetimes
(N , γ ) such that the orthogonal distributionwith respect to theKilling vector field ξ is integrable. An equivalent formulation
is to say that (N , γ ) takes the form of a warped product

R×u M := (R× M, −u2dt2 + g),

where M is a spacelike hypersurface of N whose induced metric is the Riemannian metric g and u is a smooth, positive
function on M . The fact that R×u M is a Ricci-flat spacetime is equivalent to the fact that the data (M, g, u) satisfies the
following conditions:

Hessg u = ug
∆gu = 0. (1)
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One also says that this static spacetime is vacuum, which refers to the fact that the energy–momentum tensor of general
relativity is chosen to be zero.

The problem of classifying static vacuum spacetimes is therefore expressed as the problem of finding all positive solutions
(g, u) of the above system. Fundamental examples of such static spacetimes are the Schwarzschild spacetimes. They have
the expression

g =


1 −

2m
rn−2

−1

dr2 + r2σSn−1 , u =


1 −

2m
rn−2

1/2

on the manifold M =

(2m)1/(n−2), +∞


× Sn−1, where m ∈ R is a parameter called the mass. Some rigidity statements

hold in spacetime dimension n + 1 = 4. For instance, Bunting and Masood-Ul-Alam were able to prove that Schwarzschild
spacetimes are the only static vacuum ones which have the further property to be asymptotically flat [3].

In the more general setting of stationary vacuum spacetimes, the classification in dimension 3 + 1 of the asymptotically
flat ones and the uniqueness of Kerr spacetimes has been a major problem of mathematical relativity for the last decades.
Wewill not develop further on this question and refer the reader to [4] and references therein. In both cases, the spacetimes
considered heremay exhibit a black hole region and, as for the Schwarzschild and Kerr examples, may fail to be geodesically
complete.

Instead, we focus here on stationary vacuum spacetimes which are moreover complete. The first rigidity result in this
setting comes from Lichnerowicz [5], under the further assumptions that the spacetimes considered are 3 + 1 dimensional
and asymptotically flat. He obtains that only the Minkowski spacetime R3,1 fulfills these properties (see also Einstein and
Pauli [6]).

Much more recently, Anderson [7] proved the corresponding result without the asymptotic flatness assumption.

Theorem 1.1 (Anderson, 2000). Let (N , γ ) be a 4-dimensional complete stationary vacuum spacetime. Then (N , γ ) is isometric
to (R× M, −dt2 + g), for some flat complete Riemannian manifold (M, g).

The proof of this result in [7] uses the full power of Cheeger–Fukaya–Gromov collapsing theory, with refinements specific
to dimension three, which makes it far from elementary.

However, Case [8] (and subsequently Catino [9]) recently came back to the static vacuum setting and proved that all
complete static vacuum n+ 1-dimensional spacetimes (N , γ ) take the form of a product (R×M, −dt2 + g), where (M, g)
is a complete Ricci-flat n-dimensional Riemannianmanifold. Their techniques are less sophisticated, relying on the Bochner
formula, as well as comparison arguments à la Bakry–Émery.

In this paper, we will see how the same kind of techniques (and indeed without Bakry–Émery) can be adapted to provide
a proof of rigidity in the stationary case, Theorem 2.2, in dimension n+1 = 4 and under a suitable completeness assumption
(instead of requiring the space–time to be complete, we assume a natural metric on the orbit space is complete). The point
is, even though our proof does not reach the full generality of Anderson’s, it remains quite elementary. Note also that the
stationary case is a bit more challenging than the static case, for the contribution of the non-trivial connection on the line
bundle induces a contribution to the Ricci curvature which turns out to have a bad sign. This technicality is overcome by a
conformal trick in dimension 3+ 1. In higher dimension, one can derive similar formulas for stationary initial data but they
are harder to control. We discuss them at the end of the paper.

2. The setting, in dimension 3 + 1

Definitions of stationary spacetimes existing in literature can vary depending on the authors and the context, although
all of them assume the existence of a timelike Killing vector field.1 We adopt the following definition in our work (compare
with [7] and [10, Chap. XIV]).

Definition 2.1. A (n + 1)-dimensional spacetime (N , γ ) is called stationary if it has no closed timelike curves and if there
exists a timelike Killing vector field ξ on N whose orbits are complete.

As mentioned in [11], the chronological assumption, corresponding to the non-existence of closed timelike curves,
together with the orbit completeness prevent pathologies of the space of orbits.2 In fact, a stationary spacetime (N , γ ) in
the sense of the above definition can be seen as a principal R-bundle over the space of orbitsM which is a smooth manifold
diffeomorphic to any spacelike hypersurface of N (see Geroch [12]).

1 Note however that this is no longer exact in the context of asymptotically flat spacetimes with a black hole region, where the Killing vector field is
usually asked to be timelike only in the asymptotic region, see e.g. [4]
2 Without this assumption, an example of pathological spacetime is the 2-dimensional torus equippedwith theMinkowskimetric−dx2+dy2 . The orbits

of the timelike Killing vector field ξ =
√
2 ∂x + ∂y are diffeomorphic to R, but the orbit space is not a smooth manifold.
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