
Journal of Geometry and Physics 99 (2016) 42–56

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

The degree of mobility of Einstein metrics
Vladimir S. Matveev, Stefan Rosemann ∗

Institute of Mathematics, Friedrich-Schiller-Universität Jena, 07737, Germany

a r t i c l e i n f o

Article history:
Received 22 April 2015
Received in revised form 20 August 2015
Accepted 24 September 2015
Available online 9 October 2015

Keywords:
Projectively equivalent metrics
Einstein metrics
Lorentz signature
Overdetermined PDE

a b s t r a c t

Two (pseudo-)Riemannian metrics are called projectively equivalent if their un-
parametrized geodesics coincide. The degree of mobility of a metric is the dimension of
the space of metrics that are projectively equivalent to it. We give a complete list of pos-
sible values for the degree of mobility of Riemannian and Lorentzian Einstein metrics on
simply connected manifolds, and describe all possible dimensions of the space of essential
projective vector fields.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The aim of this article is to study Einstein metrics (i.e., such that the Ricci curvature is proportional to the metric) of
Riemannian and Lorentzian signature in the realm of projective geometry.

Recall that two (pseudo-)Riemannian metrics g and ḡ on a manifold M are called projectively equivalent1 if their
unparametrized geodesics coincide. Clearly, any constant multiple of g is projectively equivalent to g . A generic metric does
not admit other examples of projectively equivalent metrics, see [1]. If twometrics g, ḡ are affinely equivalent, that is, if their
Levi-Civita connections coincide, then they are also projectively equivalent. Affinely equivalentmetrics arewell-understood
at least in Riemannian [2,3] and Lorentzian signature [4,5], see also Lemma 9. The case of arbitrary signature is much more
complicated, see [4] or the more recent article [6] for a local description of all such metrics.

The theory of projectively equivalent metrics has a long and rich history—we refer to the introductions of [7,8] or to the
survey [9] for more details, and focus on Einstein metrics in what follows.

Einstein metrics are very natural objects in projective geometry. For instance, as shown in [7], the property of a metric
g to be Einstein is projectively invariant in the following sense: any metric that projectively equivalent and not affinely
equivalent to an Einstein metric is also Einstein. A more educated point of view on the whole subject is the following:
a projective geometry, given by a class of projectively equivalent connections (not necessarily Levi-Civita connections),
is an example of a parabolic geometry, a special case of a Cartan geometry, see the monographs [10,11]. As shown
in [12], the metrics with Levi-Civita connection contained in the given projective class are in one-to-one correspondence
with the solutions of a certain overdetermined system of partial differential equations. This system is the so-called first
Bernstein–Gelfand–Gelfand equation (see [13,14]) and, as shown in [15], Einstein metrics correspond to a special class of
solutions called normal.

The degree of mobility D(g) of a (pseudo-)Riemannian metric g is the dimension of the space of g-symmetric solutions of
the PDE (2). As we explain in Section 2, nondegenerate solutions of (2) are in one-to-one correspondence with the metrics
projectively equivalent to g . Hence, intuitively, D(g) is the dimension of the space of metrics projectively equivalent to g .
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1 The notions ‘‘geodesically equivalent’’ or ‘‘projectively related’’ are also common.
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Fig. 1. Degree of mobility D(g) from Theorem 1 for 3 ≤ dimM ≤ 15. The triangles denote the additional values for Lorentz signature.

WehaveD(g) = 1 for a genericmetric g andD(g) ≥ 2 if g admits a projectively equivalentmetric that is nonproportional
to g . As our main result, we determine all possible values for the degree of mobility D(g) of Riemannian and Lorentzian
Einstein metrics, locally or on simply connected2 manifolds. Let us denote by ‘‘[α]’’ the integer part of a real number α.

Theorem 1. Let (M, g) be a simply connected Riemannian or Lorentzian Einsteinmanifold of dimension n ≥ 3. Suppose g admits
a projectively equivalent but not affinely equivalent metric.

Then, the degree of mobility D(g) is one of the numbers ≥ 2 from the following list:

•
k(k+1)

2 + l, where n ≥ 5, 0 ≤ k ≤ n − 4 and 1 ≤ l ≤ [
n+1−k

5 ] for g Riemannian and Lorentzian.
•

k(k+1)
2 + l, where n ≥ 5, k = n − 3 mod 5, 2 ≤ k ≤ n − 3 and l = [

n+2−k
5 ] for g Lorentzian.

•
(n+1)(n+2)

2 .

Conversely, for n ≥ 3 and each number D ≥ 2 from this list, there exist simply connected n-dimensional Riemannian resp.
Lorentzian Einstein manifolds admitting projectively equivalent but not affinely equivalent metrics and such that D is the degree
of mobility D(g).

In Theorem 1, the degree of mobility is at least 2 since we assumed that g admits a metric ḡ projectively equivalent to g
but not affinely equivalent to it. Suppose this assumption is dropped, that is, let us assume allmetrics projectively equivalent
to g are affinely equivalent to it. In this case the complete list of possible values of the degree of mobility of g can be easily
obtained by combining Lemma 9 with methods similar to the ones used in Sections 3.2 and 3.4. It is

{k(k + 1)/2 + l : 0 ≤ k ≤ n − 2, 1 ≤ l ≤ [(n − k)/2]} ∪ {n(n + 1)/2}

if g is Einstein with nonzero scalar curvature and

{k(k + 1)/2 + l : 0 ≤ k ≤ n − 4, 1 ≤ l ≤ [(n − k)/4]} ∪ {n(n + 1)/2}

if g is Ricci flat.
It is well-known, see e.g. [16, p. 134], that if D(g) is equal to its maximal value (n + 1)(n + 2)/2, then g has constant

sectional curvature. Conversely, this value is attained on simply connected manifolds of constant sectional curvature. In
view of this, the case n = 3 in Theorem 1 is trivial, since a 3-dimensional Einstein metric has constant sectional curvature
and its degree of mobility takes the maximum value D(g) = 10.

For 4-dimensional Einstein metrics, we obtain the following statement as an immediate consequence of Theorem 1
(compare also Fig. 1):

Corollary 2. Let (M, g) be a 4-dimensional Riemannian or Lorentzian Einstein manifold. Suppose ḡ is projectively equivalent to
g but not affinely equivalent. Then, g has constant sectional curvature.

Corollary 2 was known before, see [7, Theorem 2] (or, alternatively, [17]), and it is actually true for metrics of arbitrary
signature. However, our methods for proving Theorem 1 and Corollary 2 are different from that used in [17,7] (although we
will rely on some statements from [7]). A special case of Corollary 2 was also considered in [5] where it was proven that
4-dimensional Ricci flat nonflatmetrics cannot be projectively equivalent unless they are affinely equivalent. This result was
generalized to Einsteinmetrics of arbitrary scalar curvature in [18]. Note that by [7, Theorem 1], the statement of Corollary 2
survives for arbitrary dimension under the assumption that both metrics are geodesically complete.

2 By definition, simple connectedness implies connectedness.
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