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a b s t r a c t

After a thorough treatment of all algebraic structures involved,we address twodimensional
holonomy operators with values in crossed modules of Hopf algebras and in crossed mod-
ules of associative algebras (called here crossedmodules of bare algebras). In particular, we
will consider two general formulations of the two-dimensional holonomy of a (fully prim-
itive) Hopf 2-connection (exact and blur), the first being multiplicative the second being
additive, proving that they coincide in a certain natural quotient (defining what we called
the fuzzy holonomy of a fully primitive Hopf 2-connection).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A crossed module of groups X = (∂ : E → G,◃) is given by a map ∂ : E → G of groups, together with an action ◃ of G
on E by automorphisms. This action must satisfy two natural properties (the Peiffer relations):

∂(g ◃ e) = g ∂(e) g−1, for each g ∈ G, and e ∈ E (first Peiffer relation),

∂(e) ◃ f = e f e−1, for each e, f ∈ E (second Peiffer relation).

Note that the second Peiffer law implies that ker(∂) is an abelian subgroup of E. These are very flexible axioms. For example,
given crossedmodulesX = (∂ : E → G,◃) andX′

= (∂ : E ′
→ G′,◃), thenX×X′

=

(∂×∂ ′) : E×E ′

→ G×G′,◃ × ◃′),
with the obvious product action ◃ × ◃′, is a crossed module. On the other hand, if L is a subgroup of ker(∂) ⊂ E, such that
G ◃ L ⊂ L, which implies that L is normal (because of the second Peiffer relation), then X/L = (∂ : E/L → G,◃) with the
obvious quotient action is also a crossed module. We note that morphisms of crossed module are defined in the obvious
way.

Crossed modules of groups were invented by Whitehead in [1], naturally appearing in the context of homotopy theory,
being algebraic models for homotopy 2-types [2] (for a modern account of this see [3,4]). Given a pointed fibration F →

E → B, then the inclusion of the fiber F in the total space E induces a crossed module

π1(F) → π1(E)


. A pointed pair of

spaces (M,N) also has a fundamental crossed module

π2(M,N) → π1(N)


, with the obvious boundary map and action of

π1 on π2. The relation between group crossed modules and strict 2-groups (small categories whose sets of objects and of
morphisms are groups, with all structure maps, including the composition, being group morphisms) was elucidated in [5],
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where we can find the first reference to the fact that the categories of crossedmodules and of strict 2-groups are equivalent.
This relation was fully generalized for crossed complexes and ω-groupoids in [6].

We can see a (strict) 2-group as being a small 2-category with a single object where all morphisms are invertible; [7].
Given a crossedmoduleX = (∂ : E → G,◃), the 1-morphisms of the associated 2-group, denoted byC×(X), have the form
∗

g
−→ ∗, where g ∈ G, with the obvious composition. The 2-morphisms of C×(X) have the form below, composing vertically

and horizontally (for conventions see 2.3.1):

∗

∂(e)−1g

((

g

66× ⇑ e ∗ , where g ∈ G, and e ∈ E.

A general theory of (Lie) 2-groups (including non-strict ones) appears in [7]. This theory parallels the theory of Lie-2-
algebras (strict and non-strict), which was developed in [8]. We mention that a strict Lie 2-algebra is uniquely represented
by a crossed module X = (∂ : e → g,◃) of Lie algebras (also called a differential crossed module), where ◃ is a left action of
g on e by derivations, and ∂ : e → g is a Lie algebra map, furthermore satisfying the (obvious) differential Peiffer relations.
Given a crossedmoduleX = (∂ : E → G,◃), of Lie groups, the induced Lie algebramap ∂ : e → g, and action by derivations
of g on e, defines a crossed module X = (∂ : e → g,◃), of Lie algebras.

On the purely algebraic side, crossed modules of (Lie) groups and of Lie algebras arise in a variety of ways. Given a Lie
group G, we have the actor crossed module of G, being AUT (G) = (G

ad
−→ Aut(G),◃), where Aut(G) is the Lie group of

automorphisms of G, acting in G in the obvious way and ad is the map that sends every g ∈ G to the map adg : G → Gwhich

is conjugation by g . If we have a central extension {1} → A
i

−→ B
∂
−→ K → {1} of groups, given any section s : K → B of

∂ : B → K , then k ◃ b .
= s(k) b s(k)−1, where k ∈ K and b ∈ B, is an action of K on B, by automorphisms independent of the

chosen section, defining a crossed module with underlying group map being ∂ : B → K .

To a chain-complex V = (. . .
β
−→ Vn

β
−→ Vn−1

β
−→ . . .) of vector spaces we can associate crossed modules of Lie algebras

and (in the finite dimensional case) of Lie groups, denoted respectively by GL(V) =

∂ : gl1(V) → gl0(V),◃) and by

GL(V); see [7,9]. The Lie algebra gl0(V) is made out of chain-maps V → V , with the usual bracket. On the other hand,
the Lie algebra gl1(V) is given by homotopies (degree one maps) V → V , up to 2-fold homotopies. (The bracket is not the
commutator of the underlying linear maps, the latter having degree two.) The 2-group associated to the crossed module
GL(V) has a single object, has morphisms being the invertible chain maps V → V and 2-morphisms being the chain
homotopies (up to 2-fold homotopy) between them. The vertical composition of 2-morphisms is induced by the sum of
homotopies.

We can also consider pre-crossed modules of groups and of Lie algebras. These are defined similarly to crossed modules,
however not imposing the second Peiffer condition. Crossed modules form a full subcategory of the category of pre-crossed
modules (both in the group and Lie algebra cases). Moreover, any pre-crossed module can naturally be converted to a
crossed module by dividing out the second Peiffer relations. This defines reflection functors {pre-crossed modules} →

{crossed modules}.
Crossed modules of groups and of Lie algebra naturally have free objects. Let g be a Lie algebra. Let also E be a set, with

a map ∂0 : E → g. We have a free differential crossed module F = (∂ : f → g) on the map ∂0 : E → g. Here ∂ : f → g

is a Lie algebra map, and we have a (set) inclusion i : E → f, satisfying ∂ ◦ i = ∂0. This free crossed module F satisfies
(and is defined by) the following universal property: if we have a differential crossed module X′

= (∂ ′
: e′ → g′,◃), a Lie

algebra map f : g → g′ and a set map g0 : E → e′, satisfying ∂ ′
◦ g0 = f ◦ ∂0, then there exists a unique Lie algebra map

g : f → e′, extending g0, and such that, furthermore, the pair

g : f → e′, f : g → g′) is a map of differential crossedmodules

F → X′.
Models for the free differential crossed module on a set map ∂0 : E → g appear in [10,11]. Consider the action ◃ of g

on U(g), the universal enveloping algebra of g by left multiplication. Consider also the vector space ⊕e∈E U(g).e, with the
obvious action ◃ of g. Consider the linear map ∂1 : ⊕e∈E U(g).e → g such that ∂1(a.e) = a◃ad ∂0(e) (here a ∈ U(g) and
e ∈ E), where ◃ad is the action of U(g) in g induced by the adjoint action of g on g. Clearly ∂1(X ◃ (a.e)) = [X, ∂1(a.e)],
where X ∈ g, a ∈ U(g) and e ∈ E. Let f1 be the free Lie algebra on the vector space ⊕e∈E U(g).e. We therefore have a Lie
algebra map ∂2 : f1 → g, extending ∂1. Since any linear map V → V , V a vector space, induces a derivation at the level of
the free Lie algebra on V , we have a Lie algebra action ◃ of g on f1, by derivations. Clearly this defines a pre-crossed module
of Lie algebras. The free crossed module on the map ∂0 : E → g is obtained by converting the latter differential pre-crossed
module into a crossed module of Lie algebras.

Crossedmodules (of groups and of Lie algebras) are closely related to cohomology; see [12–14]. Namely, in the group case
(not considering any topology), given a group K and a K -module A, there is a one-to-one correspondence between group
cohomology classes ω ∈ H3(K , A) and weak homotopy classes of crossed modules (∂ : E → G,◃), fitting inside the exact
sequence {0} → A → E

∂
−→ G → K ∼= G/∂(E) → {1}. We actually have a group isomorphism considering Baer sums of

crossed modules; [13].
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