Cauchy-Schwarz-type inequalities on Kähler manifolds-II

CrossMark

Ping Li
Department of Mathematics, Tongji University, Siping Road 1239, Shanghai 200092, China

A R T I CLE INFO

Article history:

Received 17 May 2015
Accepted 3 August 2015
Available online 8 September 2015

Dedicated to Professor Martin Guest on the occasion of his 60th birthday

MSC:

32Q15
58A14
14F2XX

Keywords:

Cauchy-Schwarz-type inequality
Compact Kähler manifold
Hodge-Riemann bilinear relation

Abstract

We establish in this note some Cauchy-Schwarz-type inequalities on compact Kähler manifolds, which generalize the classical Khovanskii-Teissier inequalities to higherdimensional cases. Our proof is to make full use of the mixed Hodge-Riemann bilinear relations due to Dinh and Nguyên. A proportionality problem related to our main result is also proposed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and main results

Suppose X is an n-dimensional algebraic manifold and $D_{1}, D_{2}, \ldots, D_{n}$ are n (not necessarily distinct) ample divisors on X. Then we have the following opposite Cauchy-Schwarz-type inequality,

$$
\begin{equation*}
\left(\left[D_{1} D_{2} D_{3} \cdots D_{n}\right]\right)^{2} \geq\left[D_{1} D_{1} D_{3} \cdots D_{n}\right] \cdot\left[D_{2} D_{2} D_{3} \cdots D_{n}\right] \tag{1.1}
\end{equation*}
$$

where [•] denotes the intersection number of the divisors inside it and the equality holds if and only if the two divisors D_{1} and D_{2} are numerically proportional.
(1.1) was discovered independently by Khovanskii and Teissier around in 1979 [1,2] and now is called Khovanskii-Teissier inequality. This equality is indeed a generalization of the classical Aleksandrov-Fenchel inequalities and thus present a nice relationship between the theory of mixed volumes and algebraic geometry [3, p. 114]. The proof of (1.1) is to apply the usual Hodge-Riemann bilinear relations [4, p. 122-123] to the Kähler classes determined by these divisors and an induction argument. The approach also suggests that the usual Hodge-Riemann bilinear relations may be extended to the mixed case. After some partial results towards this direction [5,6], this aim was achieved in its full generality by Dinh and Nguyên in [7].

We would like to point out a fact, which was not mentioned explicitly in [7], that (1.1) can now be extended by the mixed Hodge-Riemann bilinear relations as follows. Suppose $\omega, \omega_{1}, \omega_{2}, \ldots, \omega_{n-2}$ are $n-1$ Kähler classes and $\alpha \in H^{1,1}(M, \mathbb{R})$ an arbitrary real-valued (1, 1)-form on an n-dimensional compact connected Kähler manifold M. Then we have

$$
\begin{equation*}
\left(\int_{M} \alpha \wedge \omega \wedge \omega_{1} \wedge \cdots \wedge \omega_{n-2}\right)^{2} \geq\left(\int_{M} \alpha^{2} \wedge \omega_{1} \wedge \cdots \wedge \omega_{n-2}\right) \cdot\left(\int_{M} \omega^{2} \wedge \omega_{1} \wedge \cdots \wedge \omega_{n-2}\right) \tag{1.2}
\end{equation*}
$$

[^0]where the equality holds if and only if $\alpha \in \mathbb{R} \omega$. Indeed, [7, Theorem A] tells us that the index of the following bilinear form
\[

$$
\begin{equation*}
Q(u, v):=\int_{M} u \wedge v \wedge \omega_{1} \wedge \cdots \wedge \omega_{n-2}, \quad u, v \in H^{1,1}(M, \mathbb{R}) \tag{1.3}
\end{equation*}
$$

\]

is of the form $(+,-, \ldots,-)$, i.e., the positive and negative indices are 1 and $h^{1,1}-1$ respectively, where $h^{1,1}$ is the corresponding Hodge number of M (the dimension of $H^{1,1}(M, \mathbb{R})$). Define a real-valued function $f(t):=Q(\omega+t \alpha, \omega+$ $t \alpha)(t \in \mathbb{R})$. Then $f(0)>0$ as $\omega, \omega_{1}, \ldots, \omega_{n-2}$ are all Kähler classes and thus their product is strictly positive. $\omega+t \alpha$ spans a 2-dimensional subspace in $H^{1,1}(M, \mathbb{R})$ if α and ω are linearly independent and thus $f\left(t_{0}\right)<0$ for some $t_{0} \in \mathbb{R}$ in view of the index of $Q(\cdot, \cdot)$. Then the discriminant of $f(t)$ gives (1.2) with strict sign " $>$ ".

When these Kähler classes are all equal: $\omega=\omega_{1}=\cdots=\omega_{n-2}$, (1.2) degenerates to the following special case:

$$
\begin{equation*}
\left(\int_{M} \alpha \wedge \omega^{n-1}\right)^{2} \geq\left(\int_{M} \alpha^{2} \wedge \omega^{n-2}\right) \cdot\left(\int_{M} \omega^{n}\right), \quad \forall \alpha \in H^{1,1}(M, \mathbb{R}) \tag{1.4}
\end{equation*}
$$

which is quite well-known and, to the author's best knowledge, should be due to Apte in [8]. Inspired by (1.4), the author asked in [9] whether or not there exists a similar inequality to (1.4) for those $\alpha \in H^{p, p}(M, \mathbb{R})\left(1 \leq p \leq\left[\frac{n}{2}\right]\right)$ and obtained a related result [9, Theorem 1.3], whose proof is also based on the usual Hodge-Riemann bilinear relations. As an application we presented some Chern number inequalities when the Hodge numbers of the manifolds satisfy some constraints [9, Corollary 1.5]. Now keeping the mixed Hodge-Riemann bilinear relations established in [7] in mind, we may also ask if the main idea of the proof in [9] can be carried over to the mixed case to extend the α in (1.2) to $H^{p, p}$ (M, \mathbb{R}) for $1 \leq p \leq\left[\frac{n}{2}\right]$. The answer is affirmative and this is the main goal of our current article. So this article can be viewed as a sequel to [9], which explains its title either.

Our main result (Theorem 1.3) will be stated in the rest of this section. In Section 2 we briefly review the mixed Hodge-Riemann bilinear relations and then present the proof of Theorem 1.3. In Section 3 we discuss a proportionality problem related to (1.1) posed by Teissier and propose a similar problem related to our main result.

In order to state our result as general as possible, we would like to investigate the elements in $H^{p, p}(M, \mathbb{C})$, i.e., complexvalued (p, p)-forms on M. The following definition is inspired by (1.2) and is a mixed analogue to [9, Definition 1.1].

Definition 1.1. Suppose M is an n-dimensional compact connected Kähler manifold. For $1 \leq p \leq\left[\frac{n}{2}\right], \alpha \in H^{p, p}(M, \mathbb{C})$ and $n-2 p+1$ Kähler classes $\omega, \omega_{1}, \ldots, \omega_{n-2 p}$, we put $\Omega_{p}:=\omega_{1} \wedge \cdots \wedge \omega_{n-2 p}$ and define

$$
g\left(\alpha, \omega ; \Omega_{p}\right):=\left(\int_{M} \alpha \wedge \bar{\alpha} \wedge \Omega_{p}\right) \cdot\left(\int_{M} \omega^{2 p} \wedge \Omega_{p}\right)-\left(\int_{M} \alpha \wedge \omega^{p} \wedge \Omega_{p}\right) \cdot\left(\int_{M} \bar{\alpha} \wedge \omega^{p} \wedge \Omega_{p}\right)
$$

α is said to satisfy Cauchy-Schwarz (resp. opposite Cauchy-Schwarz) inequality with respect to the Kähler classes ω and $\left(\omega_{1}, \ldots, \omega_{n-2 p}\right)$ if $g\left(\alpha, \omega ; \Omega_{p}\right) \geq 0$ (resp. $\left.g\left(\alpha, \omega ; \Omega_{p}\right) \leq 0\right)$.

Remark 1.2. Note that $\alpha \in H^{p, p}(M, \mathbb{R})$ if and only if $\alpha=\bar{\alpha}$. Also note that $g\left(\alpha, \omega ; \Omega_{p}\right)$ in the above definition is a real number and so we can discuss its non-negativity or non-positivity.

The main result of this note, which extends [9, Theorem 1.3] to the mixed case, is the following:
Theorem 1.3. Suppose M is an n-dimensional compact connected Kähler manifold.
(1) Given $1 \leq p \leq\left[\frac{n}{2}\right]$, all elements in $H^{p, p}(M, \mathbb{C})$ satisfy Cauchy-Schwarz inequality with respect to any Kähler classes ω and $\left(\omega_{1}, \ldots, \omega_{n-2 p}\right)$ (in the sense of Definition 1.1) if and only if the Hodge numbers of M satisfy

$$
\begin{equation*}
h^{2 i, 2 i}=h^{2 i+1,2 i+1}, \quad 0 \leq i \leq\left[\frac{p+1}{2}\right]-1 . \tag{1.5}
\end{equation*}
$$

(2) All elements in $H^{1,1}(M, \mathbb{C})$ satisfy opposite Cauchy-Schwarz inequality with respect to any Kähler classes ω and $\left(\omega_{1}, \ldots, \omega_{n-2 p}\right)$.
(3) Given $2 \leq p \leq\left[\frac{n}{2}\right]$, all elements in $H^{p, p}(M, \mathbb{C})$ satisfy opposite Cauchy-Schwarz inequality with respect to any Kähler classes ω and $\left(\omega_{1}, \ldots, \omega_{n-2 p}\right)$ if and only if the Hodge numbers of M satisfy

$$
\begin{equation*}
h^{2 i-1,2 i-1}=h^{2 i, 2 i}, \quad 1 \leq i \leq\left[\frac{p}{2}\right] . \tag{1.6}
\end{equation*}
$$

Moreover, in all the cases mentioned above, the equalities hold if and only if these α are proportional to ω^{p}.
The first part of the following corollary extends the Khovanskii-Teissier inequalities (1.1) and (1.2).

https://daneshyari.com/en/article/1895501

Download Persian Version:

https://daneshyari.com/article/1895501

Daneshyari.com

[^0]: E-mail address: pingli@tongji.edu.cn.
 http://dx.doi.org/10.1016/j.geomphys.2015.08.022 0393-0440/© 2015 Elsevier B.V. All rights reserved.

